SIEMENS

RWF40...

Compact Universal Controller

optimized for temperature and pressure control through the control of modulating or multi-stage burners

User Manual

The RWF40... controller and this User Manual are intended for use by OEMs which integrate the controller into their products!

Contents

1. Introduction 6
1.1 General notes 6
1.2 Description6
1.31.3.1Typographical conventions7Warning symbols7
1.3.2 Notification symbols 7
1.3.3 Presentation 7
2. Type of unit 8
2.1 Type field 8
3. Installation 9
3.1 Installation site and climatic conditions 9Dimensions 9
Side-by-side mounting 10
3.4 Mounting in a panel cutout. 103.53.6
Cleaning the front panel. 11
Removing the controller module 11
4. Electrical connections 12
4.1 Installation notes 12
4.24.34.45.15.2Block diagram13
Assignment of terminals 14
Galvanic separation 17
5. Operating modes 18
5.2.3 Two-stage burner, 3-position output 19Low-fire operation18
High-fire operation 18
Modulating burner, 3-position output 18
Modulating burner, modulating output 19
5.2.4 Two-stage burner, modulating output 205.35.4
5.4.15.4.2
5.4.3 Setpoint «SP1», analog / binary setpoint shift 23
Safety shutdown 20
Pre-defined setpoint 20
Setpoint changeover «SP1 / SP2», analog setpoint shift 21
Setpoint changeover «SP1» / external setpoint 22
5.4.4 External setpoint, binary setpoint shift 24
5.5Weather-dependent setpoint shift25
5.5.1 Heating curve slope 26
5.6 Response threshold «Q» 275.7
Cold start of the plant 28
6. Operation 29
6.1 Basic display 30
6.1.1 Meaning of the display and buttons 30
6.2 User level. 316.2.1
6.2.2 Manual operation of a modulating burner 33Changing the setpoints31
6.2.3 Manual operation of a two-stage burner 33
6.2.4 Start self-setting 34
6.2.5 34
6.3
Parameter level
6.3.1 Enter parameters 3535
6.4Configuration levelChanging the configuration code.35Parameter settings36
8.8.1Self-setting function in high-fire operation47What to do if.50
10.1 ...numbers are flashing on the display 50
7. Technical data 51
11.1 Inputs 51
11.1.1 Analog input 1 (actual value) 51
11.1.2 Analog input 2 (external setpoint, setpoint shift) 51
11.1.3 Analog input 3 (outside temperature) 52
11.1.4 Binary input «D1» 52
11.1.5 Binary input «D2» 52
11.2 Outputs 52
11.2.1 Output 1 (release of burner) 52
11.2.2 Output 2, 3 (3-position output) 52
11.2.3 Output 4 (limit comparator) 52
11.2.4 Output 5, modulating output (option) 53
11.2.5 Transducer supply 53
11.2.6 Interface RS-485 (optional) 53
11.3 General ratings 53
11.3.1 Measured value accuracy 54
11.3.2 Measured value circuit monitoring 54
11.3.3 Environmental conditions 54
8. Current settings. 55
12.1 Process data 55
12.2 Parameter level 55
12.3 Configuration level 56

1.1 General notes

1.2 Description

Use
The RWF40... is used primarily for controlling temperature or pressure in oil- or gas-fired heating plants. It is a compact 3-position controller without position feedback that acts on the burner. An external switch can be used to change it over to a 2-position controller for the control of two-stage burners. The built-in thermostat function switches the burner on and off. An adjustable response threshold is used to switch to a higher burner output (high-fire operation).

Control A shift controller controls the temperature or pressure. Minimum and maximum limits for the setpoint can be set. A self-setting function is available as a standard feature.

The plug-in controller module measures $96 \times 48 \times 127.5 \mathrm{~mm}$ and is especially suited for mounting in control panels. The controller incorporates two 4-digit 7-segment displays for the actual value (red) and setpoint (green). A limit comparator is also provided and its switching behavior can be set on the configuration level.
A selection can be made between eight different limit comparator functions.

Options

An RS-485 interface is used for integration into a data network. Output 5 can be used as a modulating output for modulating or 2-stage operation.
All connections are made via screw terminals at the rear of the unit.

1. Introduction

1.3 Typographical conventions

1.3.1 Warning symbols

Danger

Caution

Caution

1.3.2 Notification symbols

1.3.3 Presentation

[^0]| 雨 | Note | This symbol is used to draw your special attention to a remark. |
| :---: | :---: | :---: |
| \Rightarrow | Reference | This symbol refers to additional information in other Manuals, chapters or sections. |
| $a b c^{1}$ | Footnote | Footnotes are comments, referring to specific parts of the text. They consist of two parts: |
| | | 1) The markings in the text are arranged as continuous superscript numbers |
| | | 2) The footnote text is placed at the bottom of the page and starts with a number and a period |
| * | Action | This symbol indicates that a required action is described. |
| | | The individual steps are indicated by an asterisk, e.g.: |
| | | $\boldsymbol{*}$ Press the $\boldsymbol{\Delta}$ button |

Buttons are shown in a box. Either symbols or text are possible. If a button has multiple assignments, the text shown is always the one that corresponds to the function currently used.
The signs for Danger and Caution are used in this Manual under the following conditions:

This symbol is used where there may be a danger to personnel if the instructions are disregarded or not strictly followed!

This symbol is used where there may be damage to equipment or data if the instructions are disregarded or not strictly followed!

This symbol is used if pre-cautions must be taken in handling electrostatically sensitive components.

This symbol refers to additional information in other Manuals, chapters or sections.

Footnotes are comments, referring to specific parts of the text. They consist of two parts:

1) The markings in the text are arranged as continuous superscript numbers
2) The footnote text is placed at the bottom of the page and starts with a number and a period

* Press the $\mathbf{\Delta}$ button

2.1 Type field

Location

Types

Factory setting

Accessories

The type field is glued onto the housing. The type designation consists of operating voltage and type reference of the unit.

Type of unit	Description
RWF40.000A97 RWF40.010A97 ${ }^{1 .}$	Basic version with 3-position output
RWF40.001A97 RWF40.011A97 ${ }^{1 .}$	With additional modulating output
$\begin{aligned} & \text { RWF40.002A97 } \\ & \text { RWF40.012A97 }{ }^{1 .} . \end{aligned}$	With additional modulating output and RS-485 interface

1. Packing variants
(a) The supply voltage connected must match the voltage given on the type field.

The measured value range and the analog inputs are set at the factory.
\Rightarrow Chapter 8 «Configuration»

Adapter frame ARG40 for plants where the pre-decessor model RWF32... was used, which shall be converted to the RWF40... .

Bracket ARG41 for mounting the RWF40... on 35 mm DIN rails conforming to DIN 46277.

Dummy cover AVA10.200/109 for covering a control panel cutout for the RWF40...

3.1 Installation site and climatic conditions

- The installation site should be as free as possible from vibrations, dust and corrosive media
- The controller should be installed as far away as possible from sources of electromagnetic fields, such as frequency converters or high-voltage ignition transformers

Relative humidity: ≤ 95 \% (non-condensing)
Ambient temperature range: $-20 \ldots+50^{\circ} \mathrm{C}$
Storage temperature range: $-40 \ldots+70^{\circ} \mathrm{C}$

3.2 Dimensions

Panel cutout to DIN 43700

3. Installation

3.3 Side-by-side

If several controllers are mounted side-by-side or above one another in a control panel, the minimum spacing must be observed, namely 30.5 mm vertically and 10.5 mm horizontally.

3.4 Mounting in a panel cutout

* Place the seal provided onto the controller housing.

The unit must be installed with the seal so that no water or oil can penetrate the housing!

* Insert the controller from the front into the panel cutout.

* At the rear of the panel, push the fixing elements into the guide slots from the side or top. The flat faces of the fixing elements must lie against the housing.
* Place the fixing elements against the rear of the panel, and tighten them evenly with a screwdriver.

3. Installation

3.5. Cleaning the front panel

The front panel can be cleaned with normal washing and rinsing agents or detergents.
(al)
It is not resistant to corrosive acids, caustic solutions and abrasive cleaners, or cleaning with high-pressure cleaners!

3.6 Removing the controller module

The controller module can be removed from the housing for servicing.

The rules of DIN EN 100015 «Protection of electrostatically sensitive devices» must be adhered to for internal work on the controller! No liability will be accepted for damage caused by electrostatic discharge.

Press the ribbed surfaces together (at top and bottom) and pull out the controller module.

4. Electrical connections

4.1 Installation notes

Safety regulations

Fusing

Interference suppression

- The choice of cable, the installation and the electrical connections of the controller must conform to the regulations of VDE 0100 «Regulations for the installation of power circuits with nominal voltages below AC 1000 V», or appropriate local regulations
- The electrical connections may only be carried out by qualified personnel
- If contact with live parts is possible while working on the unit, the controller must be disconnected from the power supply at both poles
- An internal current-limiting resistor interrupts the supply voltage in the event of a shortcircuit. The external fusing should not be rated above 1 A (slow). The output relays must be fused for a maximum of 2 A to prevent contact welding in the event of a shortcircuit in the load circuit
\Rightarrow Section 11.2 «Outputs»
- No other loads may be connected to the supply terminals of the controller
- The electromagnetic compatibility and interference suppression levels conform to standards and regulations listed under «Technical data»
\Rightarrow Chapter 11 «Technical data»
- Input, output and supply cables should be routed separately, not parallel to one another
- Arrange sensor and interface cables as twisted and screened cables, and do not run them close to power cables or components. Ground the screening to the controller at one end to the «TE» terminal
- Earth the «TE» terminal of the controller to the protective earth. This cable must have a cross-sectional area that is at least as large as that of the supply cables. Earthing cables must be wired in a star configuration to a common earthing point connected to the protective earth of the supply. Earthing cables may not be looped from one controller to another
- The unit is not suitable for installation in areas with an explosion hazard
- Incorrect settings on the controller (setpoint, data of parameter and configuration levels) can affect the proper functioning of the following process or lead to damage. Safety devices that are independent of the controller, such as overpressure relief valves or temperature limiters / monitors should therefore always be provided, and only be capable of adjustment by qualified personnel. Please observe the appropriate safety regulations. Since self-setting cannot be expected to handle all possible control loops, the stability of the actual value that is produced should be checked
- The analog inputs of the controller may not exceed a maximum voltage of AC 30 V or DC 50 V against «TE»
\Rightarrow Section 4.3 «Galvanic separation»

4.2 Block diagram

4. Electrical connections

4.3 Assignment of terminals

Electrical connections may only be made by qualified personne!!					
Outputs	Display LED	Terminal no.			Connection diagram
Relay 1: release of burner Contact protection: Varistor S07K275		Q14 pole Q13 N.O. contact			
Relay 2: regulating unit opens Contact protection: RC unit	-	Y1 N.O. contact Q common pole			
Relay 3: regulating unit closes Contact protection: RC unit	∇	Y2 N.O. contact			
Relay 4: limit comparator Contact protection: Varistor S07K275	K6	Q64 pole Q63 N.O. contact			
Modulating output (optional) DC 0 (4) ... $20 \mathrm{~mA}, 0$ (2)... 10 V		X1+ X1-			$\begin{aligned} & \mathrm{X} 1+\mathrm{O}+ \\ & \text { X1-O- } \\ & \text { 786517/1099 } \end{aligned}$

Analog input 1 (actual value)	Terminals	Cl
Thermocouple	M1	M1
Resistance thermometer in 3-wire circuit	G1+	I1

Analog input 2 (setpoint and setpoint shift)	Terminals	Connection diagram
Resistance potentiometer Offset correction (OFF2)	XB6 start M6 slider M6 end	
Current input DC $0 . .20 \mathrm{~mA}, 4$... 20 mA	$\begin{array}{\|l\|} \hline \text { XB6 } \\ \text { M6 } \end{array}$	$\begin{aligned} & \text { XB6 } \circ-+ \\ & \text { M6 } 0- \\ & 78650991099 \end{aligned}$
Voltage input $\text { DC } 0 . . .1 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}$	$\begin{aligned} & \hline \text { XU6 } \\ & \text { M6 } \end{aligned}$	

Analog input 3 (outside temperature)	Terminals	Connection diagram
Resistance thermometer in 2-wire circuit, line compensation through offset correction (OFF3)	B9	B9 O-
	M9	M9

4. Electrical connections

Binary inputs	Terminals	Connection diagram
Operating mode selector \Rightarrow Section 5.2 «High-fire operation»	D 1	D1 O-
Setpoint shift / changeover \Rightarrow Sections 5.4.1...5.4.4	D 2	D 2 O
Common ground	GND	GND O-78621099

Operating voltage, interface	Terminals	Connection diagram
Operating voltage	L1 line	L1 O-
AC $100 \ldots 240 \mathrm{~V} \pm 10 \%, 48 \ldots 63 \mathrm{~Hz}$	N neutral	N O-
Technical earth	TE	TE O

Operating voltage for transducer	G+ G-	
Serial interface RS-485	$\begin{aligned} & \hline \mathrm{CA} \\ & \mathrm{CB} \\ & \mathrm{CG} \end{aligned}$	$\begin{gathered} \text { RxD / TxD+ } \\ \text { RxD / TxD- } \\ \text { GND } \end{gathered}$

4. Electrical connections

4.4 Galvanic separation

The diagram shows the maximum potential differences that may exist between the function modules in the controller.

3 analog inputs
Input 1:
Actual value
for Pt100, Ni100,
Pt1000, Ni1000
thermocouples or
standard signals
Input 2: External setpoint, setpoint shift for resistance 0... $\mathrm{k} \Omega$, or standard signals
Input 3:
Outside temperature
for Pt1000, Ni1000

2 binary inputs
for potential-free contacts
D1: operating mode changeover
D2: setpoint shift / changeover

Transducer supply

DC $24 \mathrm{~V}, 30 \mathrm{~mA}$
(short-circuit proof)

Modulating output

 (optional)Output 5:
Modulating output,
DC $0 . . .10 \mathrm{~V}$,
DC 0... $20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$

Serial interface

 RS-485 (optional)MOD bus protocol baud rate 9600

Technical earth TE

7865f07e/1299

Release of burner L1, N :
Output 1:

- Relay (N.O. contact)

3-position output L1, N:

Output 2:

- Relay (reg. unit opens)

Output 3:

- Relay (reg. unit closes)

Operating voltage $\mathrm{L} 1, \mathrm{~N}$:
AC 100... $240 \mathrm{~V} \pm 10 \%$,
$48 . . .63 \mathrm{~Hz}$

Max. insulation voltages:

5. Operating modes

5.1 Low-fire operation

Low-fire operation means that only small amounts of heat are drawn from the boiler. A twoposition controller maintains the setpoint, switching the burner on and off like a thermostat.

Thermostat function

This control mode is therefore also known as thermostat function. An adjustable switching differential ensures that the switching frequency of the burner can be selected to reduce wear.

Modulating and 2-stage operation:

Actual value between «HYS1» and «HYS3»

5.2 High-fire operation

High-fire operation means that large amounts of heat are drawn from the boiler, so that the burner is on all the time. If the heating load during the thermostat operation rises to a level where the actual value begins to fall below the switch-on threshold «HYS1», the controller does not immediately switch over to a higher burner output, but first makes a dynamic test of the control deviation and only switches to the higher output when an adjustable threshold «Q» is exceeded (A).
\Rightarrow Section 5.6 «Response threshold Q»

Operating mode changeover

- In high-fire operation, depending on the application, the burner can be fired in modulating or two-stage operation, with a larger amount of fuel than in low-fire operation. The binary input «D1» can be used to switch between modulating and twostage operation
- When the contact is open: modulating burner operation
- When the contact is closed: two-stage burner operation

5.2.1 Modulating burner, 3-position output

In diagram area (1), the thermostat function is active. The modulating mode of burner operation is shown in area (2). In high-fire operation, a 3-position controller acts on an actuator through relay 2 (open) and relay 3 (close).

In area (3), the actual value exceeds the upper switch-off threshold «HYS3» and the controller switches off the burner (B). The controller only starts low-fire operation when the level falls below the switch-on threshold «HYS1» again. If «Q» is exceeded, the controller switches to high-fire operation (A).
\Rightarrow Section 5.6 «Response threshold Q»

5. Operating modes

5.2.2 Modulating burner, modulating output

In diagram area (1), the thermostat function is active.
In area (2), the controller is controlling to the adjusted setpoint.

The positioning signal is delivered as a standard signal via the modulating output.

The modulating controller must be available and configured in the unit (optional).
\Rightarrow Section 8.2 «C112 Limit comparator, controller type, setpoint «SP1», locking»

5.2.3 Two-stage burner, 3-position output

In diagram area (1), the thermostat function is active.
In area (2), a two-position controller acts on the second stage, via relay 2 (open) and relay 3 (close) by switching it into the circuit at the switch-on threshold «HYS1» / and out of circuit at the switch-off threshold «HYS2».

In area (3), the actual value exceeds the upper switch-off threshold «HYS3» and the controller shuts down the burner (B). The controller only starts low-fire operation when the level falls below the switch-on level «HYS1» again. If «Q» is exceeded, the controller switches to high-fire operation (A).
\Rightarrow Section 5.6 «Response threshold Q»

5.2.4 Two-stage burner, modulating output

In this case, a standard binary signal switches the second stage into circuit with analog output «X1» on reaching the switch-on threshold «HYS1» and switches it out of circuit at the lower switch-off threshold «HYS2».

雨
The modulating controller must be available and configured in the unit (optional).
\Rightarrow Section 8.2 «C112 Limit comparator, controller type, setpoint «SP1», locking»

5.3 Safety shutdown

In the event of a sensor failure, the controller cannot monitor the actual value of the boiler temperature (analog input 1). A safety shutdown is automatically carried out to guard against overheating.
This also applies to the acquisition of the external setpoint at analog input 2.
Functions

- Burner off
- 3-position output for closing the regulating unit
- Self-setting is ended
- Manual operation is ended

5.4 Pre-defined setpoint

The setpoint is pre-selected with the buttons or the interface within pre-set limits.
It is possible to shift the setpoint, by either an analog or a binary signal, to influence it according to the weather or to change it with an external contact.

5. Operating modes

5.4.1 Setpoint changeover «SP1 / SP2», analog setpoint shift

C111 and C112 are
 described in chapter 8

5.4.2 Setpoint changeover «SP1» / external setpoint

5. Operating modes

5.4.3 Setpoint «SP1», analog / binary setpoint shift

5. Operating modes
5.4.4 External setpoint, binary setpoint shift

5. Operating modes

5.5 Weather-dependent setpoint shift

The RWF40... can be configured in such a way that if a Landis \& Staefa Ni1000 outside sensor (e.g. QAC22) is connected, a weather-dependent setpoint shift is implemented. The minimum and maximum setpoint values can be set by the lower setpoint limit «SPL» and the upper setpoint limit «SPH». Parameter «P» can be used to apply a parallel displacement to the heating curve.

Each RWF40... must have its own separate outside sensor connected (no parallel connection)!

Parallel displacement of the heating curve
$\Rightarrow \quad$ Chapter 7 «Parameter settings»

5. Operating modes

Slope «H» of the heating curve can be used to adjust the setpoint in response to the outside temperature, as shown in the diagram. The common origin of the heating curves is set at $\left(20{ }^{\circ} \mathrm{C} / 20^{\circ} \mathrm{C}\right)$. The effective range of the weather-adjusted setpoint is restricted by the setpoint limits «SPH» and «SPL».

«HYS1» is the switch-on point for the burner, and «HYS3» is the switch-off point. As already described, they act with the set shift relative to the weather-controlled setpoint.
\Rightarrow Section 5.2.1 «Modulating burner, 3-position output»
\Rightarrow Section 5.2.2 «Modulating burner, modulating output»

5. Operating modes

5.6 Response threshold «Q»

The response threshold «Q» defines how long and how low the actual value can drop before the system switches over to high-fire operation.
An internal mathematical calculation using an integration function determines the sum of all the areas $Q_{\text {eff }}=$ Q1 + Q2 + Q3, as shown in the diagram. This only takes place when the control deviation ($x-w$) falls below the value for the switching threshold «HYS1». If the actual value increases, integration is stopped.
If « $Q_{\text {eff" }}$ exceeds the pre-set response threshold «Q» (can be adjusted at the parameter level), this causes the second stage of the burner to be switched on or - in the case of a 3-position controller / modulating controller - the regulating unit to open. If the actual boiler temperature reaches the required setpoint, $Q_{\text {eff }}$ is set to 0 .

Actual value monitoring ensures that the switching frequency is kept low in the transitional range from low- to high-fire operation in order to reduce wear.

5. Operating modes

5.7 Cold start of the plant

When a heating system is switched off for a longer period of time, the actual value will fall.
To achieve a faster control response, the controller starts immediately in high-fire operation as soon as the control deviation ($\mathrm{x}-\mathrm{w}$) has dropped below a certain limit value. This limit is calculated as follows:

Limit value $=2$ * $\mathrm{HYS} 1-\mathrm{HYS} 3$)

Example Operating mode: modulating, 3-position output
HYS1 $=-3 \mathrm{~K}$
HYS3 $=+5 \mathrm{~K}$
$\mathrm{w}=60^{\circ} \mathrm{C}$
Limit value $=2$ * $(-3-5)=2$ * $(-8)=-16 \mathrm{~K}$
At an actual value below $44^{\circ} \mathrm{C}$, the heating up procedure starts immediately in high-fire operation, instead of in thermostat mode.

7865d20/1099

6. Operation

Assignment of levels

All levels can be accessed from the basic display via the PGM button, as shown in the diagram.
The upper actual value display (red) indicates the actual value and the parameter values for the various levels.
The setpoint and the parameters are indicated in the lower setpoint display (green).

${ }^{1)}$ After using «PGM» to step through all the parameters of a level, an automatic return occurs after the last parameter has been confirmed.

6.1 Basic display

The diagram shows the RWF40... after switching on power. This condition is called the basic display. The actual value and the currently active setpoint are shown here. Manual operation, self-setting, the user, parameter and configuration levels can be activated from here.
6.1.1 Meaning of the display and buttons

6. Operation

Initialization

Manual operation

Self-setting function

Actual value display

flashes

2-stage operation

Time-out

All displays are lit up; the setpoint display flashes for about 10 seconds after switching on power.

The actual value is indicated on the upper display. The LED for manual operation is on. Depending on the operating mode and the type of controller, the setpoint or the level of the manual actuator position is shown on the setpoint display (green).
\Rightarrow Section 6.2.2 «Manual operation of a modulating burner»

The actual value is shown on the actual value display (red) and the text «tunE» flashes on the setpoint display (green).
\Rightarrow Section 9.1 «Self-setting function in high-fire operation»
\Rightarrow Chapter 10 «What to do if...»
\Rightarrow Section 5.2 «High-fire operation»

雨
If there is no action by the operator, the controller returns automatically to the basic display after about 30 seconds.

6.2 User level

6.2.1 Changing the setpoints

This level is started from the basic display. Setpoints «SP1», «SP2 / dSP» can be altered, and the analog inputs «E2» (external setpoint / setpoint shift) and «E3» (outside temperature) can be displayed.

To alter «SP1», «SP2» or «dSP»:

* Change to the user level with PGM
* Alter the setpoint «SP1» with $\boldsymbol{\nabla}$ and $\mathbf{\Delta}$
* Change to setpoint «SP2» or «dSP» with PGM
* Alter the setpoint «SP2» or «dSP» with $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$
* Return to the basic display with EXIT or automatically by time-out after about 30 s

[^1]
6.2.2 Manual operation, modulating burner

	* Press EXIT for 5 s
	The LED above the hand symbol lights up.
3-position controller	* Change the regulating unit's position with $\mathbf{\triangle}$ and $\boldsymbol{\nabla}$
	Relay 2 opens the regulating unit as long as $\boldsymbol{\Delta}$ is pressed.
	Relay 3 closes the regulating unit as long as $\boldsymbol{\nabla}$ is pressed.
	The LEDs for the regulating units indicate if «OPEN» or «CLOSE» is activated.
Modulating controller	* Change the regulating unit's position with $\mathbf{\triangle}$ and $\boldsymbol{\nabla}$
	The modulating output delivers the regulating unit's position that was entered.
	* Return to automatic operation by pressing EXIT for 5 s
	When manual operation is activated, the regulating unit's position is set to 0 until another entry with the buttons is made.
Thermostat mode	Manual operation can only be activated if the thermostat function has set relay 1 to active.
	If the thermostat function sets relay 1 to inactive during manual operation, manual operation is terminated.

6.2.3 Manual operation, two-stage burner

> * Press EXIT for 5 s
> * Press $\boldsymbol{\Delta}$ briefly

- Relay 2 is active, relay 3 is inactive
- Analog output (optional) delivers DC 10 V

The regulating unit opens

* Or press $\boldsymbol{\nabla}$ briefly
- Relay 2 is inactive, relay 3 is active
- Analog output (optional) delivers DC 0 V

The regulating unit closes

* Return to automatic operation by pressing EXIT for 5 s

雨
If the thermostat function sets relay 1 to inactive during manual operation, manual operation is terminated.

6. Operation

6.2.4 Start self-setting

When «tunE» stops flashing, self-setting has stopped.

* Accept the parameters that have been determined by pressing $\mathbf{\Delta}$ (press the button for at least 2 s !)

な
It is not possible to start «tunE» in manual operation or thermostat operation.
6.2.5 Display of the software version and unit of actual value

* Press ${ }^{\text {PGM }}+\boldsymbol{A}$

Available units:
${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ and \% (for standard signals)

6. Operation

6.3 Parameter level

The parameters involved in the adaptation of the controller to the controlled system are set here after the system has been started up.
Within the level, you can proceed to the next parameter by pressing PGM.

The display of the individual parameters depends on the type of controller.

6.3.1 Enter parameters

The entry and alteration of parameters is made through a continuous alteration of the value. The longer you keep the button pressed, the faster the rate of change becomes.

* Increase value by pressing $\boldsymbol{\Delta}$
* Reduce value by pressing
* Accept entry by pressing PGM
or
* Cancel entry by pressing EXIT
$\sqrt{ }$ After 2 seconds, the value that is set will automatically be accepted. The value can only change within the permitted value range.
$\Rightarrow \quad$ Chapter 7 «Parameter settings»

6.4 Configuration level

The settings made here are those required for commissioning a specific installation and therefore rarely need to be altered, such as acquisition of measured value or type of controller.

Within the level, you can proceed to the next parameter by pressing PGM

6.4.1 Changing the configuration code

```
    * Select position by pressing \nabla (position flashes!)
    * Alter value by pressing
    * Accept code by pressing PGM
    or
    * Cancel entry by pressingEXIT
\(\Rightarrow\) Chapter 8 «Configuration»
```

The parameter is shown on the lower setpoint display (green) and the value on the upper / actual value display (red).

[^2]The parameter is shown on the lower / setpoint display (green) and the value on the upper / actual value display (red).

${ }^{1)}$ This parameter is affected by the setting of the decimal place.

8. Configuration

8.1 C111 inputs

8. Configuration

Analog input 3

No function	0
Outside sensor Pt1000, 2-wire, Landis \& Staefa IEC 751	1
Outside sensor Ni1000, 2-wire, DIN 43760	2
Outside sensor Ni1000, 2-wire, Landis \& Staefa	3
Function of binary input «D2»	
No function	1
Setpoint changeover	2
Setpoint shift (binary)	0

Factory setting	9	0	3	0

8. Configuration

8.2 C112 limit comparator, controller type, setpoint «SP1», locking

Factory setting	0	0	1	0

8. Configuration

Function lk1

Function lk2

Function Ik3

Window function: relay «K6» is active when the measured value lies within a window around the setpoint (w).
Example: $\mathbf{w}=80^{\circ} \mathrm{C}, \mathrm{AL}=5, \mathrm{HYSt}=2$
Measured value rising: relay «K6» switches on at $76^{\circ} \mathrm{C}$ and off at $86^{\circ} \mathrm{C}$.
Measured value falling: relay «K6» switches on at $84^{\circ} \mathrm{C}$ and off at $74^{\circ} \mathrm{C}$.
Output 4

As for Ik1, but with inverted switching function.
Output 4

HYSt = switching differential of the window edges
AL = interval from setpoint (half the window-width)

Lower limit signaling

Function: relay inactive when measured value < (setpoint - limit value).
Example: w = $80^{\circ} \mathrm{C}, \mathbf{A L}=10, \mathbf{H Y S t}=2$
Measured value rising: relay «K6» switches on at $71^{\circ} \mathrm{C}$.
Measured value falling: relay «K6» switches off at $69^{\circ} \mathrm{C}$.

Function lk4

Function Ik6

Function Ik5

As for lk3, but with inverted switching function.

HYSt = switching differential
AL = interval from setpoint
\Rightarrow Chapter 7 «Parameter settings»

Upper limit signaling

Function: relay inactive when measured value > (setpoint + limit value).
Example: $\mathbf{w}=80^{\circ} \mathrm{C}, \mathbf{A L}=10, \mathbf{H Y S t}=2$
Measured value rising: relay «K6» switches off at $91^{\circ} \mathrm{C}$.
Measured value falling: relay «K6» switches on at $89^{\circ} \mathrm{C}$.
Output 4

As for lk5, but inverted switching function.

8. Configuration

Function Ik7

Function Ik8

As for Ik7, but with inverted switching function.

HYSt = switching differential
AL = limit value
\Rightarrow Chapter 7 «Parameter settings»

8. Configuration

8.3 C113 instrument address, dimensional unit, out-of-range

Factory setting

0110

8. Configuration

8.3.1 «SCL» scaling of standard signal range start, analog input 1

```
Example
SCL = 20; SCH = 100 %
0 mA (start) corresponds to a measured value of 20 *}\textrm{C
```


Value range: -1999...+9999 digit
Factory setting: 0 digit

8.3.2 «SCH» scaling of standard signal range end, analog input 1

Example

SCH $=80 ; \mathrm{SCL}=0^{\circ} \mathrm{C}$
20 mA (end) corresponds to a measured value of $80^{\circ} \mathrm{C}$

Value range: -1999...+9999 digit
Factory setting: 100 digit

8.3.3 «SCL2» scaling of standard signal range start, analog input 2

```
Example
SCL2 = 20:
0 mA corresponds to a measured value of 20 }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ , as already described
Value range: -1999...+9999 digit
Factory setting: 0 digit
```


8. Configuration

8.3.4 «SCH2» scaling of standard signal range end, analog input 2

Example | $\mathrm{SCH} 2=80$: |
| :--- |
| 20 mA corresponds to a measured value of $80^{\circ} \mathrm{C}$, as already described |
| Value range: $-1999 \ldots+9999$ digit |
| |
| Factory setting: 100 digit |

8.3.5 «SPL» lower setpoint limit

The controller restricts the setpoints to the value that is set.
Value range: -1999...+9999 digit
Factory setting: 0 digit

8.3.6 «SPH» upper setpoint limit

The controller restricts the setpoints to the value that is set.
Value range: -1999...+9999 digit
Factory setting: 100 digit

8.3.7 «OFF1» actual value correction for analog input 1

The actual value correction can be used for correction of the measured value upwards or downwards by a specific amount. It is also used for line compensation when resistance thermometers are connected in a 2-wire circuit.

Value range: -1999...+9999 digit
Factory setting: 0 digit

Example

Measured value	Offset	Displayed value
294.7	+0.3	295
295.3	-0.3	295

8.3.8 «OFF2» actual value correction for analog input 2

Value range: -1999...+9999 digit
Factory setting: 0 digit
8.3.9 «OFF3» actual value correction for analog input 3

Value range: -1999...+9999 digit
Factory setting: 0 digit
8.3.10 «dF1» $2^{\text {nd }}$ order digital filter for analog input 1

Value range for filter time constant: $0 . . .100 \mathrm{~s}$
Factory setting: 1 s

9. Self-setting function

9.1 Self-setting function in high-fire operation

«tunE» is only possible in high-fire operation, in the «modulating burner» mode.

The self-setting function «tunE» is a pure software function unit that is integrated into the controller. In the «modulating» mode of operation, «tunE» tests the response of the controlled system to steps of the positioning signal according to a special procedure. A complex control algorithm uses the response of the controlled system (actual value) to calculate and store the control parameters for a PID or PI controller (set dt = 0!). The «tunE» procedure can be repeated as often as required.

Two procedures
The «tunE» function uses two different methods that are automatically selected depending on the dynamic state of the actual value and the difference from the setpoint at the start. «tunE» can be started from within any dynamic actual value sequence.
If there is a large difference between actual value and setpoint when «tunE» is activated, a switching line is established around which the controlled variable performs forced oscillations during the self-setting procedure. The switching line is set at such a level that the actual value should not exceed the setpoint.

With a small deviation between setpoint and actual value, for instance when the controlled system has stabilized, a forced oscillation is performed around the setpoint.

9. Self-setting function

The controlled system data which are recorded for the forced oscillations are used to calculate the controller parameters «rt, $\mathrm{dt}, \mathrm{Pb} .1 »$ and a filter time constant for actual value filtering that is optimized for this controlled system.

Conditions

- High-fire operation in the «modulating burner» mode.
- The thermostat function (relay 1) must be constantly activated, otherwise «tunE» will be cancelled and no optimized controller parameters will be adapted
- The above mentioned actual value oscillations during self-setting may not exceed the upper threshold of the thermostat function (increase if necessary, and lower the setpoint)

9. Self-setting function

9.2 Checking the controller parameters

Example
The optimum adjustment of the controller to the controlled system can be checked by recording a startup sequence with the control loop closed. The following diagrams indicate possible incorrect adjustments, and their correction.

The response to a setpoint change is shown here for a $3^{\text {rd }}$ order controlled system for a PID controller. The method used for adjusting the controller parameters can, however, also be applied to other controlled systems.
A favourable value for «dt» is «rt» / 4.

Optimum adjustment

10.1 ...numbers are flashing on the display

This is an indication that a measured value is not being acquired correctly.

The detection of measured value range crossings depends on the type of sensor used.
\Rightarrow Section 11.3.2 «Measured value circuit monitoring»

Display	Description		Cause / controller behavior / remedy
	Actual value display (red) shows «1999» flashing. Setpoint display shows the setpoint.	$0 \mathrm{CO}$	Overrange or underrange on analog input 1. The actual value is not being measured. Controller initiates lockout. \Rightarrow Section 5.3 «Safety shutdown» The limit comparator responds to analog input 1 according to the configuration (C113). * Check the electrical connections for open-circuit of sensor
	When analog input 3 is configured for outside temperature (C111) and the measured value is called up, the actual value display (red) shows «1999» flashing.	006	Overrange or underrange on analog input 3. The outside temperature is not being measured! The weather-dependent setpoint is inactive! * Check the electrical connections for open-circuit of sensors
	When analog input 2 is configured (C111) and the measured value is called up, the process value display (red) shows «1999» flashing.	006	Overrange or underrange on analog input 2. The external setpoint is not being measured. Controller initiates lockout \Rightarrow Section 5.3 «Safety shutdown» * Check the electrical connections for open-circuit of sensors
	Actual value display (red) shows «XXXXXX». Setpoint display (green) shows «1999» flashing.	0008	Overrange or underrange on analog input 2. The setpoint shift is not being measured. Controller initiates lockout Section 5.3 «Safety shutdown» * Check the electrical connections for open-circuit of sensor

11.1 Inputs

11.1.1 Analog input 1 (actual value)

For resistance thermometers, thermocouples or standard signals with $2^{\text {nd }}$ order digital filter (configurable).

Resistance thermometers

In 2-wire or 3-wire circuit:

Type	Measured value range
$\mathrm{Pt} 100, \mathrm{Pt} 1000$	$-200 \ldots+850^{\circ} \mathrm{C}$
Ni100, Ni1000 DIN 43760	$-60 \ldots+250^{\circ} \mathrm{C}$
Ni1000 from Landis \& Staefa	$-50 \ldots+160^{\circ} \mathrm{C}$

Line resistance: < 30Ω

Line compensation

Not required for a 3-wire circuit.
When using a resistance thermometer in a 2-wire circuit, line compensation can only be made by means of the offset correction.

Thermocouples

Type	Measured value range
$\mathrm{Fe}-\mathrm{CuNi} « \mathrm{~J} »$	$-200 \ldots+1000^{\circ} \mathrm{C}$
$\mathrm{NiCr}-\mathrm{Ni}$ «K»	$-200 \ldots+1372^{\circ} \mathrm{C}$
$\mathrm{Cu}-\mathrm{CuNi}$ «T»	$-200 \ldots+400^{\circ} \mathrm{C}$
$\mathrm{NiCrSi}-\mathrm{NiSi}$ «N»	$-100 \ldots+1300^{\circ} \mathrm{C}$

Cold-junction temperature: internal

Standard signals

Signal	Internal resistance Ri Voltage drop $\Delta \mathrm{Ue}$
DC $0 \ldots 10 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}=2 \mathrm{M} \Omega$
DC $0 \ldots 1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}=2 \mathrm{M} \Omega$
DC $0 \ldots 20 \mathrm{~mA}$	$\Delta \mathrm{U}_{\mathrm{e}}=<1 \mathrm{~V}$
DC $4 \ldots 20 \mathrm{~mA}$	$\Delta \mathrm{U}_{\mathrm{e}}=<1 \mathrm{~V}$

Sampling time: 210 ms

11.1.2 Analog input 2 (external setpoint, setpoint shift)

Resistance measured value $0 \ldots 1 \mathrm{k} \Omega$ standard signals without linearization.
Potentiometer With 2-wire circuit
$\mathrm{R}=0 . .1 \mathrm{k} \Omega$

Standard signals

Signal	Internal resistance Ri Voltage drop $\Delta \mathbf{U e}$
DC $0 \ldots 10 \mathrm{~V}$	$\mathrm{R}_{\mathrm{i}}=2 \mathrm{M} \Omega$
DC $0 \ldots 20 \mathrm{~mA}$	$\Delta \mathrm{U}_{\mathrm{e}}=1 \mathrm{~V}$
DC $4 \ldots 20 \mathrm{~mA}$	$\Delta \mathrm{U}_{\mathrm{e}}=1 \mathrm{~V}$

Sampling time: 630 ms

11.1.3 Analog input 3 (outside temperature)

For resistance thermometers in a 2-wire circuit, with fixed filter time constants (21 h 18 min for the weather-dependent setpoint enable)

Resistance thermometer	Type	Measured value range
	Pt1000	$-200 . . .+850{ }^{\circ} \mathrm{C}$
	Ni1000 DIN 43760	$-60 \ldots+250{ }^{\circ} \mathrm{C}$
	Ni1000 from Landis \& Staefa	$-50 \ldots+160^{\circ} \mathrm{C}$
	Sampling time: 6 s	
11.1.4 Binary input «D1»	Potential-free contact for operating mode changeover: - Modulating burner, when the contact is open, LED on the front is not lit - 2-stage burner, when the contact is closed, LED on the front is lit	
11.1.5 Binary input «D2»	Potential-free contact for the following functions, depending on the configuration: - No function - Setpoint shift - Setpoint changeover	

11.2 Outputs

4 relay outputs, 1 modulating analog output (optional) and a transducer supply are provided as standard.

11.2.1 Output 1 (release of burner)

Relay output (N.O. contact)
Contact rating: \quad AC $24 . . .240 \mathrm{~V}, 2 \mathrm{~A}$ at p.f. $(\cos \varphi)>0.6$
Contact life: $>2 \times \cdot 10^{5}$ switching cycles at rated load Internal contact protection: Varistor S07K275

11.2.2 Output 2, 3 (3-position output)

2 relay outputs (N.O. contacts) with a common pole, for regulating unit open / close

Contact rating:	AC $24 \ldots . .240 \mathrm{~V}, 2 \mathrm{~A}$ at $\cos \varphi>0.6$
Contact life:	$>2 \times \cdot 10^{5}$ switching cycles at rated load
Internal contact protection:	RC combination $(\mathrm{C}=2.5 \mathrm{nF}, \mathrm{R}=100 \Omega)$

11.2.3 Output 4 (limit comparator)

Relay output (N.O. contact)

Contact rating:
Contact life:
Internal contact protection:

AC $24 \ldots 240 \mathrm{~V}, 2 \mathrm{~A}$ at $\cos \varphi>0.6$
$>2 \times 10^{5}$ switching cycles at rated load Varistor S07K275

11.2.4 Output 5, modulating output (option)

Continuous output, electrically isolated from the analog inputs:
$\Delta \mathrm{U}<\mathrm{AC} 30 \mathrm{~V}, \Delta \mathrm{U}<\mathrm{DC} 50 \mathrm{~V}$

Standard signals	Load, burden
DC $0 \ldots 10 \mathrm{~V}$ (short-circuit-proof)	Load $=>500 \Omega$
DC $0 \ldots 20 \mathrm{~mA}$	Burden $=<500 \Omega$
DC $4 \ldots 20 \mathrm{~mA}$	Burden $=<500 \Omega$

Accuracy: $\pm 0.25 \%, \pm 50 \mathrm{ppm} / \mathrm{K}$

11.2.5 Transducer supply

DC $24 \mathrm{~V}, 30 \mathrm{~mA}$ (short-circuit-proof)

11.2.6 Interface RS-485 (optional)

Baud rate:	9600
Protocol:	MOD bus
Unit address:	$1 \ldots 99$

Galvanic separation between supply voltage, analog inputs and outputs.
\Rightarrow Section 4.3 «Galvanic separation»

11.3 General ratings

Weight:	approx. 430 g
Data backup:	EEPROM
Operating voltage:	AC $100 \ldots 240 \mathrm{~V} \pm 10 \%, 48 \ldots 63 \mathrm{~Hz}$
Power consumption:	approx. 5 VA Electrical connection:
at the rear, via pug-in screw terminal strips, angled at 45°	
Electrical safety:	to EN 60730 Case:
	mounting depth 130 mm plastic body with rear panel, self-extinguishing flammability class: UL94 V0 seal between case and control panel

11.3.1 Measured value accuracy

Resolution: > 15 bit

Measured value accuracy	Ambient temperature error
Resistance thermometer:	
$\leq 0.05 \%$	$\leq 50 \mathrm{ppm} / \mathrm{K}$
Thermocouples:	
$\leq 0.25 \%$	
Standard signals:	
$\leq 0.1 \%$	$\leq 100 \mathrm{ppm} / \mathrm{K}$

The values include the linearization tolerances.

11.3.2 Measured value circuit monitoring

Transducer	Probe break	Short-circuit
Resistance thermometer	X	X
Thermocouples	X	-
DC $0 \ldots 10 \mathrm{~V}$	-	-
DC $0 \ldots 20 \mathrm{~mA}$	-	-
DC $4 \ldots 20 \mathrm{~mA}$	X	X

- = is not detected

X = is detected, and «-1999» appears on the display
\Rightarrow Chapter 10 «What to do if...»
11.3.3 Environmental conditions

Permissible ambient temperature range:
$-20 \ldots+50^{\circ} \mathrm{C}$ (short-time up to $60^{\circ} \mathrm{C}$)
Permissible storage temperature range:
$-40 \ldots+70^{\circ} \mathrm{C}$
Climatic conditions:
Relative humidity $\leq 95 \%$, (non-condensing)

Degree of protection to EN 60529:

Front IP65
Rear IP20
Electromagnetic compatibility (EMC):
To NAMUR recommendation NE 21, EN 50081 part 1, EN 50082 part 2

12.1 Process data

Parameter	Display	Value range	Factory setting	Setting
Setpoint $1^{1)}$	SP1	SPL-SPH	0	
Setpoint 2 (option) ${ }^{1)}$	SP2	SPL-SPH	0	
Digital setpoint shift (optional) ${ }^{1)}$	dSP	SPL-SPH	0	
Outside temperature (optional)	TA	\Rightarrow Section 8.1 «C111 Inputs»	-	
Pre-definition of external setpoint $1)$	SP.E	SPL-SPH	-	

${ }^{1)}$ These parameters are affected by the setting for the decimal place.

12.2 Parameter level

Parameter	Display	Value range	Factory setting	Setting
Limit value of limit comparator ${ }^{1)}$	AL	-1999...+9999 digit	0	
Switching differential for limit comparator ${ }^{1)}$	HYSt	0...999.9 digit	1	
Proportional band ${ }^{1)}$	Pb. 1	0.1...999.9 digit	10	
Derivative time	dt	0... 9999 s	80	
Integral action time	rt	0... 9999 s	350	
Contact spacing ${ }^{1)}$	db	0...999.9 digit	1	
Actuator running time	tt	$10 . .3000 \mathrm{~s}$	15 s	
Switch-on threshold burner / stage II ${ }^{1)}$	H Y S 1	0...-199.9 digit	-5	
Switch-off level stage II ${ }^{1)}$	H Y S 2	0... HYS3 digit	3	
Upper switch-off threshold ${ }^{1)}$	H Y S 3	0...999.9 digit	5	
Response threshold	q	0...999.9	0	
Heating curve slope	H	0... 4	1	
	P	-90... +90	0	

[^3]12. Actual settings

12.3 Configuration level

Parameter	Display	Factory setting	Setting
Analog input 1, 2 and 3; setpoint changeover / shift	C111	9030	
Limit comparator; controller type; setpoint 1; locking	C112	0010	
Unit address; decimal place / unit, signal for out-of-range	C113	0110	
Measured value range start analog input $1^{1)}$	SCL	0	
Measured value range analog input $1^{1)}$	SCH	100	
Measured value range analog input $2{ }^{1)}$	SCL2	0	
Measured value range analog input $2{ }^{1)}$	SCH2	100	
Lower setpoint limit ${ }^{1)}$	SPL	0	
Upper setpoint limit ${ }^{1)}$	SPH	100	
Actual value correction, analog input $1^{1)}$	OFF1	0	
Actual value correction, analog input $2^{1)}$	OFF2	0	
Actual value correction, analog input $3^{1)}$	OFF3	0	
Filter time constant for digital filter, analog input 1	dF1	1	

${ }^{1)}$ These parameters are affected by the setting for the decimal place.
© 2000 Siemens Building Technologies AG

Siemens Building Technologies AG
Landis \& Staefa Division
Berliner Ring 23
D - 76347 Rastatt
Tel. 0049-7222-598-0
Fax. 0049-7222-53182
http://www.landisstaefa.com

[^0]: EXIT Button combinations

 The representation of buttons combined with a plus sign means that first the
 EXIT button must be pressed and held down and then the other button.

[^1]: శ
 After 2 seconds, the value that is set will automatically be adopted. The value can only change within the permitted value range

[^2]: ${ }^{1)}$ This parameter is affected by the setting of the decimal place.

[^3]: ${ }^{1)}$ These parameters are affected by the setting for the decimal place.

