TS0088UK00

# RS/E MZ Series Modulating Gas Burners



The RS/E MZ burners series covers a firing range from 70 to 2650 kW, and it is based on a new Digital Burner Management System, Riello REC27, which is able to manage the air-fuel ratio by independent servomotors in order to obtain a perfect output control and to assure a correct combustion and safe operation on all modulation range.

Operation can be "two stage progressive" or, alternatively, "modulating" with the installation of a PID logic regulator and respective probes.

RS/E MZ burners series guarantees high efficiency levels in all the various applications, thus reducing fuel consumption and running costs.

The exclusive design ensures reduced dimensions, simple use and maintenance.

A wide range of accessories guarantees elevated working flexibility.



# Technical Data

| MODEL                             |              | RS 34/E MZ                                              |               | 4/E MZ                 | RS 50/E MZ       | RS 64/E MZ                       |
|-----------------------------------|--------------|---------------------------------------------------------|---------------|------------------------|------------------|----------------------------------|
| Burner operation mode             |              |                                                         | Modulating (w | rith regulator and pro | bes accessories) |                                  |
| Modulation ratio at max. or       | utput        |                                                         |               | 6 ÷ 1                  |                  | 001100 = (1)                     |
| Servomotor                        | type         |                                                         | SQN13.14      | (air and gas)          |                  | SQM33.5 (air) -<br>SQM33.4 (gas) |
|                                   | run time s   |                                                         |               | 5120                   |                  |                                  |
| Heat output                       | kW           | 70/130÷390                                              | 101/2         | 203÷550                | 85/290÷580       | 150/400÷850                      |
|                                   | Mcal/h       | 60/112÷335                                              | 87/1          | 75÷473                 | 73/249÷499       | 129/344÷731                      |
| Working temperature FUEL/AIR DATA | °C min./max. |                                                         |               | 0/40                   |                  |                                  |
| Net calorific value G20 gas       | kWh/Nm³      |                                                         |               | 10                     |                  |                                  |
| Density gas G20                   | kg/Nm³       |                                                         |               | 0,71                   |                  |                                  |
| Output gas G20                    | Nm³/h        | 7/13÷39                                                 | 10/           | 20÷55                  | 8,5/29÷58        | 15/40÷85                         |
| Net calorific value G25 gas       |              |                                                         |               | 8,6                    | ,                | '                                |
| Density gas G25                   | kg/Nm³       |                                                         |               | 0,78                   |                  |                                  |
| Output gas G25                    | Nm³/h        | 8/15÷45                                                 | 12/           | 24÷64                  | 10/34÷68         | 17/47÷99                         |
| Net calorific value LPG gas       | s kWh/Nm³    |                                                         |               | 25,8                   |                  |                                  |
| Density LPG gas                   | kg/Nm³       |                                                         |               | 2,02                   |                  |                                  |
| Output LPG gas                    | Nm³/h        | 3/5÷15                                                  | 4/            | 8÷21                   | 4/11÷23          | 6/16÷33                          |
| Fan                               | Type         | (02)                                                    |               | (02)                   | (01)             | (02)                             |
| Air temperature                   | Max. °C      |                                                         |               | 60                     |                  |                                  |
| ELECTRICAL DATA                   |              |                                                         |               |                        |                  |                                  |
| Electrical supply                 | Ph/Hz/V      | (04)                                                    | (04)          | (06)                   | (05)             | (05)                             |
| Auxiliary electrical supply       | Ph/Hz/V      | (04)                                                    |               | (04)                   | (03)             | (03)                             |
| Control box                       | Type         |                                                         |               | REC27                  |                  |                                  |
| Total electrical power            | kW           | 0,6                                                     | 0,7           | 0,75                   | 1,0              | 1,6                              |
| Auxiliary electrical power        | kW           | 0,3                                                     | 0,28          | 0,3                    | 0,3              | 0,5                              |
| Protection level                  | IP           | 40                                                      |               | 40                     | 44               | 40                               |
| Motor electrical power            | kW           | 0,3                                                     | 0,42          | 0,45                   | 0,65             | 1,1                              |
| Rated motor current               | A            | 3,2                                                     | 3,5           | 2 - 1,4                | 3 - 1,7          | 4,8 - 2,8                        |
| Motor start current               | A            | 15                                                      | 17            | 14 - 10                | 13,8 - 8         | 25 -14,6                         |
| Motor protection level            | IP           |                                                         |               | 54                     |                  |                                  |
| Ignition transformer              | V1 - V2      | 230V-1x15 kV                                            |               | -1x15 kV               | 230V-1x8 kV      | 230V-1x15 kV                     |
|                                   | l1 - l2      | 1A - 25 mA                                              |               | 25 mA                  | 1A - 20 mA       | 1A - 25 mA                       |
| Operation                         |              |                                                         | Intermitte    | ent (at least one stop | every 24 h)      |                                  |
| EMISSIONS                         |              |                                                         |               |                        |                  | 1                                |
| Sound pressure                    | dBA          | 70                                                      |               | 72                     | 72               | 76                               |
| Sound output                      | W            |                                                         |               |                        |                  |                                  |
| CO Emission                       | mg/kWh       |                                                         |               |                        |                  |                                  |
| NOx Emission                      | mg/kWh       | mg/kWh < 120                                            |               |                        |                  |                                  |
| APPROVAL                          |              |                                                         |               |                        |                  |                                  |
| Directive                         |              | 90/396 - 89/336 (2004/108) - 73/23 (2006/95) - 92/42 EC |               |                        |                  |                                  |
| Conforming to                     |              |                                                         |               | EN 676                 |                  |                                  |
| Certification                     |              |                                                         |               | in progress            |                  |                                  |

- (01) Centrifugal with reverse curve blades (02) Centrifugal with forward curve blades

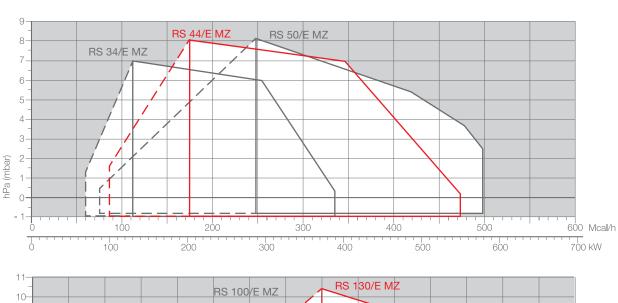
- (02) Centificigal with forward ct. (03) 1/50/230~(±10%) (04) 1/50-60/220-230~(±10%) (05) 3/50/230-400~(±10%) (06) 3/50-60/220-400~(±10%)
- (07) 3/50/400~(±10%) (08) 3/50/230~(±10%)

#### Reference conditions:

Temperature: 20°C - Pressure: 1013,5 mbar - Altitude: 0 m a.s.l. - Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.



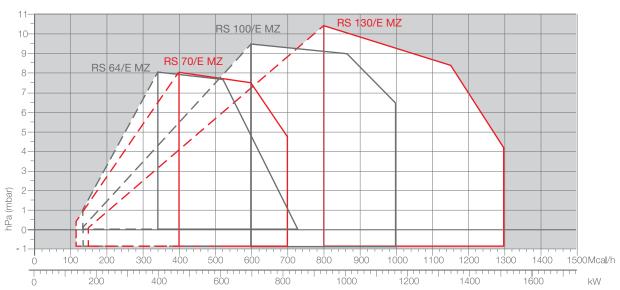

| MODEL                           |              | RS 70/E MZ        | RS 100/E MZ    | RS 130/E MZ          | RS 190/E                         | RS 250  | )/E MZ |
|---------------------------------|--------------|-------------------|----------------|----------------------|----------------------------------|---------|--------|
| Burner operation mode           |              |                   | Modulating     | (with regulator and  | d probes accessori               | es)     |        |
| Modulation ratio at max. output |              |                   |                | 6 ÷ 1                | •                                |         |        |
| type                            |              |                   | S              | QM33.5 (air) - SQI   | V33.4 (gas)                      |         |        |
| Servomotor run f                | time s       |                   |                | 5120                 |                                  |         |        |
| Hard and and                    | kW           | 135/465÷814       | 150/698÷1163   | 160/930÷1512         | 470/1279÷2290                    | 600/125 | 0÷2650 |
| Heat output —                   | Mcal/h       | 116/400÷700       | 129/600÷1000   | 138/800÷1300         | 405/1100÷1970                    | 516/107 | 5÷2279 |
| Working temperature             | °C min./max. |                   |                | 0/40                 |                                  |         |        |
| FUEL/AIR DATA                   |              |                   |                |                      |                                  |         |        |
| Net calorific value G20 gas     | kWh/Nm³      |                   |                | 10                   |                                  |         |        |
| Density gas G20                 | kg/Nm³       |                   |                | 0,71                 |                                  |         |        |
| Output gas G20                  | Nm³/h        | 13,5/46,5÷81,4    | 15/70÷116      | 16/93÷151            | 47/128÷229                       | 60/125  | ÷265   |
| Net calorific value G25 gas     | kWh/Nm³      |                   |                | 8,6                  |                                  |         |        |
| Density gas G25                 | kg/Nm³       |                   |                | 0,78                 |                                  |         |        |
| Output gas G25                  | Nm³/h        | 16/54÷95          | 17/81÷135      | 19/108÷176           | 55/149÷266                       | 70/145  | ÷308   |
| let calorific value LPG gas     | kWh/Nm³      |                   |                | 25,8                 |                                  |         |        |
| Density LPG gas                 | kg/Nm³       |                   |                | 2,02                 |                                  |         |        |
| Output LPG gas                  | Nm³/h        | 5/18÷32           | 6/27÷45        | 6/36÷59              | 18/50÷89                         | 23/48   | ÷103   |
| an                              | Type         | (01)              | (01)           | (01)                 | (02)                             | (02     | 2)     |
| ir temperature                  | Max. °C      |                   |                | 60                   |                                  |         |        |
| ELECTRICAL DATA                 |              |                   |                |                      |                                  |         |        |
| Electrical supply               | Ph/Hz/V      | (05)              | (05)           | (05)                 | (05)                             | (07)    | (80)   |
| uxiliary electrical supply      | Ph/Hz/V      | (03)              | (03)           | (03)                 | (03)                             | (00     | 3)     |
| Control box                     | Type         |                   |                | REC27                |                                  |         |        |
| otal electrical power           | kW           | 1,6               | 2,0            | 2,8                  | 5,3                              | 6,      | 5      |
| uxiliary electrical power       | kW           | 0,5               | 0,5            | 0,6                  | 0,8                              | 1       |        |
| rotection level                 | IP           | 44                | 44             | 44                   | 44                               | 44      | 1      |
| Notor electrical power          | kW           | 1,1               | 1,5            | 2,2                  | 4,5                              | 5,      | 5      |
| Rated motor current             | A            | 4,8 - 2,8         | 5,9 - 3,4      | 8,8 - 5,1            | 15,8 - 9,1                       | 12,3    | 21,3   |
| Notor start current             | Α            | 25 - 14,6         | 27,7 - 16      | 57,2 - 33,2          | 126 - 73                         | 83      | 143    |
| Notor protection level          | IP           |                   |                | 54                   |                                  |         |        |
|                                 | V1 - V2      | 230V-1x8 kV       | 230V-1x8 kV    | 230V-1x8 kV          | 230V-1x8 kV                      | 230V-1  | k15 kV |
| gnition transformer ——          | l1 - l2      | 1A - 20 mA        | 1A - 20 mA     | 1A - 20 mA           | 1A - 20 mA                       | 1A - 2  | 0 mA   |
| Operation                       |              |                   | Interm         | ittent (at least one | stop every 24 h)                 |         |        |
| EMISSIONS                       |              |                   |                | ,                    |                                  |         |        |
| Sound pressure                  | dBA          | 75                | 77             | 78,5                 | 81                               | 83      | 3      |
| Sound output                    | W            |                   |                |                      |                                  |         |        |
| O Emission                      | mg/kWh       |                   |                | < 40                 |                                  |         |        |
| IOx Emission                    | mg/kWh       | < 120 < 130 < 120 |                |                      |                                  |         |        |
| APPROVAL                        |              |                   |                |                      |                                  |         |        |
| Pirective                       |              |                   | 90/396 - 89/33 | 36 (2004/108) - 73/  | <sup>'</sup> 23 (2006/95) - 92/4 | 2 EC    |        |
| conforming to                   | EN 676       |                   |                |                      |                                  |         |        |
| Certification                   |              |                   |                | in progres           | SS                               |         |        |

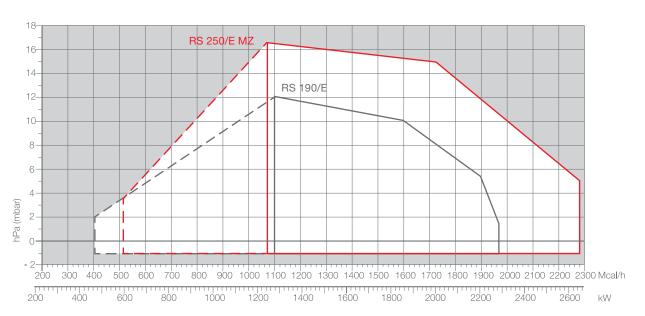
#### Reference conditions:

Temperature: 20°C - Pressure: 1013,5 mbar - Altitude: 0 m a.s.l. - Noise measured at a distance of 1 meter.

<sup>(01)</sup> Centrifugal with reverse curve blades (02) Centrifugal with forward curve blades (03) 1/50/230~(±10%) (04) 1/50-60/220-230~(±10%) (05) 3/50/230-400~(±10%) (06) 3/50-60/220-400~(±10%) (07) 3/50/400~(±10%) (08) 3/50/230~(±10%)

### **FIRING RATES**




r - 1 L \_ J Modulation range

# Test conditions conforming to EN 676:

Temperature: 20°C Pressure: 1013,5 mbar Altitude: 0 m a.s.l.







# **Fuel Supply** <a>9</a>



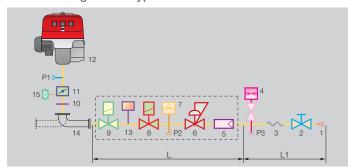
#### **GAS TRAINS**

The burners are fitted with a butterfly valve to regulate the fuel, controlled by a stepper motor with high accuracy position and absence of joint clearance and mechanical hysteresis.

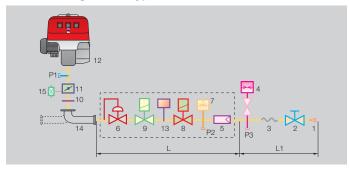
Fuel can be supplied either from the right or left hand sides.

A maximum gas pressure switch stops the burner in case of excess pressure in the fuel line (as accessory on RS 34-44/E MZ).

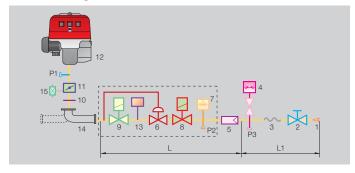
The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.


The gas train can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).






Example of fuel adjusting stepper motors on RS 34-44/E MZ and RS 190/E MZ burners.


#### MULTIBLOC gas train type MBD



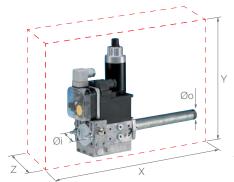
#### MULTIBLOC gas train type MBC 1200

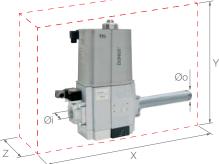


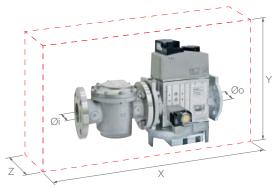
#### COMPOSED gas train



| 1                          | Gas input pipework                                        |  |  |  |
|----------------------------|-----------------------------------------------------------|--|--|--|
| 2<br>3<br>4<br>5<br>6<br>7 | Manual valve                                              |  |  |  |
| 3                          | Anti-vibration joint                                      |  |  |  |
| 4                          | Pressure gauge with pushbutton cock                       |  |  |  |
| 5                          | Filter                                                    |  |  |  |
| 6                          | Pressure regulator (vertical)                             |  |  |  |
| 7                          | Minimum gas pressure switch                               |  |  |  |
| 8                          | VS safety solenoid (vertical)                             |  |  |  |
|                            | VR regulation solenoid (vertical)                         |  |  |  |
| 9                          | Two settings: - firing output (rapid opening)             |  |  |  |
|                            | - maximum output (slow opening)                           |  |  |  |
| 10                         | Gasket and flange supplied with the burner                |  |  |  |
| 11                         | Gas adjustment butterfly valve                            |  |  |  |
| 12                         | Burner                                                    |  |  |  |
|                            | Seal control mechanism for valves 8-9. According to       |  |  |  |
| 13                         | standard EN 676, the seal control is compulsory for       |  |  |  |
| 10                         | burners with maximum output above 1200 kW (in gas train   |  |  |  |
|                            | with seal control)                                        |  |  |  |
| 14                         | Gas train-burner adapter                                  |  |  |  |
| 15                         | Maximum gas pressure switch (accessory on RS 34-44/E MZ)  |  |  |  |
| P1                         | Combustion head pressure                                  |  |  |  |
| P2                         | Pressure downstream from the regulator                    |  |  |  |
| P3                         | Pressure upstream from the filter                         |  |  |  |
|                            | Gas train supplied separately, with the code given in the |  |  |  |
|                            | table                                                     |  |  |  |
| L1                         | Installer's responsibility                                |  |  |  |
|                            |                                                           |  |  |  |


Gas trains are approved by standard EN 676 together with the burner.


The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RS/E burners, intake and outlet diameters and seal control if fitted.


Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 360 mbar, and that one of gas train "Composed" type is 500 mbar.

The range of pressure in the MULTIBLOC with flange can be modified choosing the stabiliser spring (see gas train accessory).







Example of gas train "MULTIBLOC" type MBD

Example of gas train "MULTIBLOC" type MBC 1200

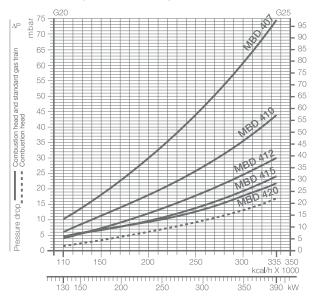
Example of gas train "COMPOSED" type MBC 1900 - 3100

|                     |                   |             |       |       |      |      |      | I                                  |              |
|---------------------|-------------------|-------------|-------|-------|------|------|------|------------------------------------|--------------|
|                     | NAME              | CODE        | Øi    | Øo    | X mm | Y mm | Z mm | OUTPUT<br>PRESSURE<br>RANGE (mbar) | SEAL CONTROL |
| INS                 | MBC 120           | 3970602 (1) | 3/4"  | 3/4"  | 371  | 186  | 120  | 4 - 50                             | (4)          |
| TRAINS              | MBD 407           | 3970599 (1) | 3/4"  | 3/4"  | 371  | 196  | 120  | 4 - 50                             | (3)          |
| GAS                 | MBD 410           | 3970258 (1) | 1"    | 3/4"  | 405  | 217  | 145  | 4 - 50                             | (3)          |
|                     | MBD 412           | 3970256 (1) | 1"1/4 | 1"1/4 | 433  | 217  | 145  | 4 - 50                             | (3)          |
| TIBL                | MBD 415           | 3970250 (1) | 1"1/2 | 1"1/2 | 523  | 250  | 100  | 4 - 50                             | (3)          |
| MULTIBLOC           | MBD 420           | 3970257 (1) | 2"    | 2"    | 523  | 300  | 100  | 4 - 50                             | (3)          |
| _                   | MBC 1200 SE 50    | 3970221 (2) | 2"    | 2"    | 573  | 425  | 161  | 4 - 60                             | (3)          |
| COMPOSED GAS TRAINS | MBC 1900 SE 65 FC | 3970222 (2) | DN 65 | DN 65 | 583  | 430  | 237  | 20 - 40                            | (3)          |
| COMPOSED            | MBC 3100 SE 80 FC | 3970223 (2) | DN 80 | DN 80 | 633  | 500  | 240  | 20 - 40                            | (3)          |

<sup>(1)</sup> Gas Train with 6-pin plug to install for connection to the burner.

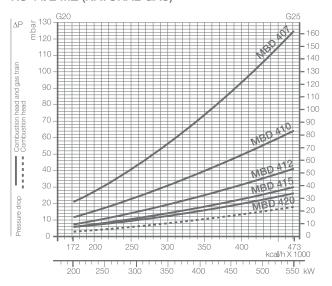
<sup>(2)</sup> Gas Train with 6-pin plug installed for connection to the burner.

<sup>(3)</sup> Included on REC 27 standard functions.


<sup>(4)</sup> Integrated seal control is not available with this gas train.



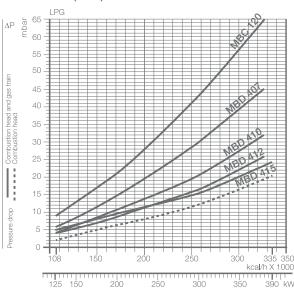
#### PRESSURE DROP DIAGRAM


The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure. The value thus calculated represents the minimum required input pressure to the gas train.

#### RS 34/E MZ (NATURAL GAS)

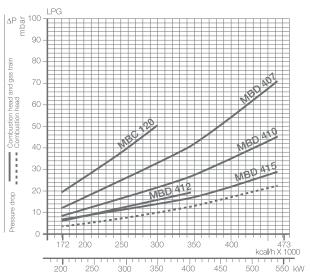


| GAS TRAIN | CODE        | ADAPTER | SEAL CONTROL |
|-----------|-------------|---------|--------------|
| MBC 120   | 3970602 (1) | 3000824 | (3)          |
| MBD 407   | 3970599 (1) | 3000824 | (2)          |
| MBD 410   | 3970258 (1) | -       | (2)          |


#### RS 44/E MZ (NATURAL GAS)



| GAS TRAIN | CODE        | ADAPTER | SEAL CONTROL |
|-----------|-------------|---------|--------------|
| MBC 120   | 3970602 (1) | 3000824 | (3)          |
| MBD 407   | 3970599 (1) | 3000824 | (2)          |
| MBD 410   | 3970258 (1) | -       | (2)          |

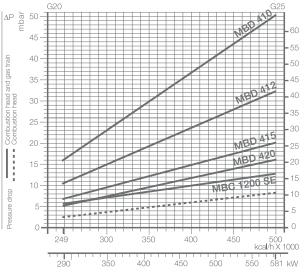

<sup>(1)</sup> Gas Train with 6-pin plug to install for connection to the burner.

#### RS 34/E MZ (LPG)



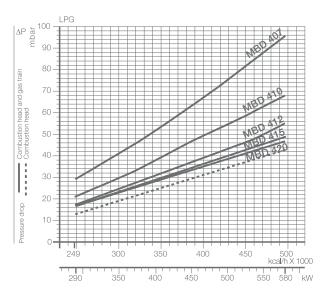
| GAS TRAIN | CODE        | ADAPTER | SEAL CONTROL |
|-----------|-------------|---------|--------------|
| MBD 412   | 3970256 (1) | -       | (2)          |
| MBD 415   | 3970250 (1) | -       | (2)          |
| MBD 420   | 3970257 (1) | 3000822 | (2)          |

#### RS 44/E MZ (LPG)



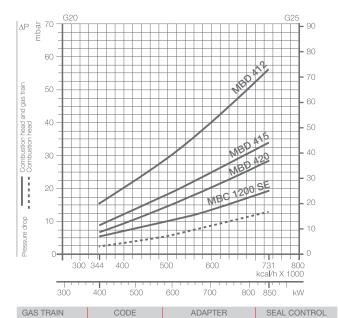

| GAS TRAIN | CODE        | ADAPTER | SEAL CONTROL |
|-----------|-------------|---------|--------------|
| MBD 412   | 3970256 (1) | -       | (2)          |
| MBD 415   | 3970250 (1) | -       | (2)          |
| MBD 420   | 3970257 (1) | 3000822 | (2)          |

(3) Integrated seal control is not available with this gas train.


<sup>(2)</sup> Included on REC 27 standard functions.

#### RS 50/E MZ (NATURAL GAS)



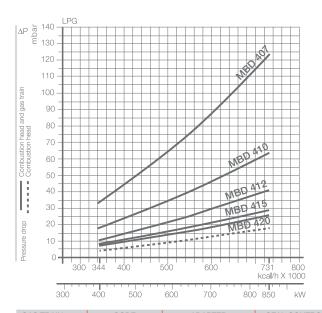

| GAS TRAIN | CODE        | ADAPTER | SEAL CONTROL |
|-----------|-------------|---------|--------------|
| MBD 407   | 3970599 (1) | 3000824 | (3)          |
| MBD 410   | 3970258 (1) | -       | (3)          |
| MBD 412   | 3970256 (1) | _       | (3)          |

#### RS 50/E MZ (LPG)



| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBD 415     | 3970250 (1) | -       | (3)          |
| MBD 420     | 3970257 (1) | 3000822 | (3)          |
| MBC 1200 SE | 3970221 (1) | 3000822 | (3)          |

#### RS 64/E MZ (NATURAL GAS)




| MBD 407 | 3970599 (1) | 3000824 + 3000843 | (3) |
|---------|-------------|-------------------|-----|
| MBD 410 | 3970258 (1) | 3000824 + 3000843 | (3) |
| MBD 412 | 3970256 (1) | 3010126           | (3) |
|         |             |                   |     |

#### (1) Gas Train with 6-pin plug to install for connection to the burner.

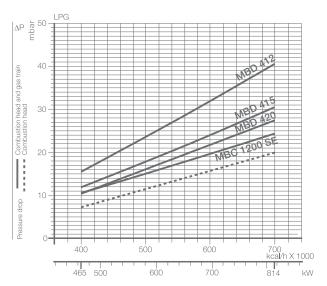
#### (2) Gas Train with 6-pin plug installed for connection to the burner.

#### RS 64/E MZ (LPG)



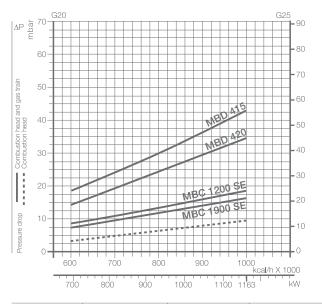

| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBD 415     | 3970250 (1) | 3000843 | (3)          |
| MBD 420     | 3970257 (1) | -       | (3)          |
| MBC 1200 SE | 3970221 (2) | -       | (3)          |

(3) Included on REC 27 standard functions.



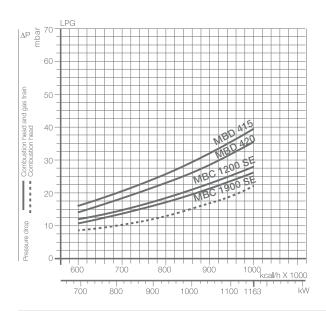

#### RS 70/E MZ (NATURAL GAS)




# GAS TRAIN CODE ADAPTER SEAL CONTROL MBD 412 3970256 (1) 3010126 (3) MBD 415 3970250 (1) 3000843 (3)

#### RS 70/E MZ (LPG)




| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBD 420     | 3970257 (1) | -       | (3)          |
| MBC 1200 SE | 3970221 (2) | -       | (3)          |

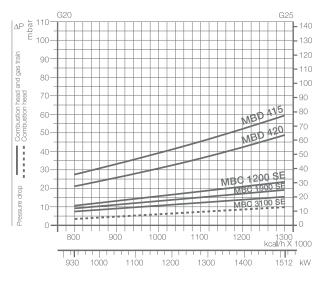
#### RS 100/E MZ (NATURAL GAS)



| GAS TRAIN | CODE        | ADAPTER | SEAL CONTROL |
|-----------|-------------|---------|--------------|
| MBD 415   | 3970250 (1) | 3000843 | (3)          |
| MBD 420   | 3970257 (1) | -       | (3)          |

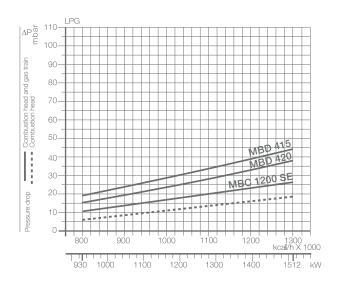
#### RS 100/E MZ (LPG)




| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBC 1200 SE | 3970221 (2) | -       | (3)          |
| MBC 1900 SE | 3970222 (2) | 3000825 | (3)          |

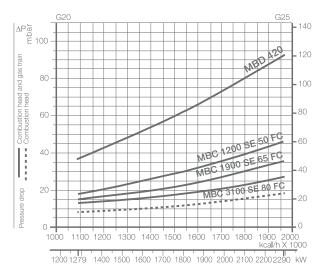
<sup>(1)</sup> Gas Train with 6-pin plug to install for connection to the burner.

<sup>(2)</sup> Gas Train with 6-pin plug installed for connection to the burner.


<sup>(3)</sup> Included on REC 27 standard functions.

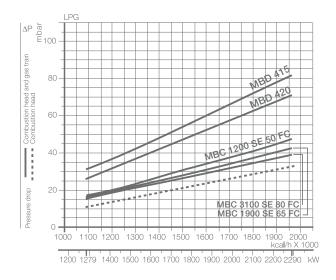
#### RS 130/E MZ (NATURAL GAS)




| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBD 415     | 3970250 (1) | 3000843 | (3)          |
| MBD 420     | 3970257 (1) | -       | (3)          |
| MBC 1200 SE | 3970221 (2) | -       | (3)          |

#### **RS 130/E MZ (LPG)**




| GAS TRAIN | CODE       | ADAPTER     | SEAL CONTROL |
|-----------|------------|-------------|--------------|
| MBC 1900  | SE 3970222 | (2) 3000825 | (3)          |
| MBC 3100  | SE 3970223 | (2) 3000826 | (3)          |

#### RS 190/E (NATURAL GAS)

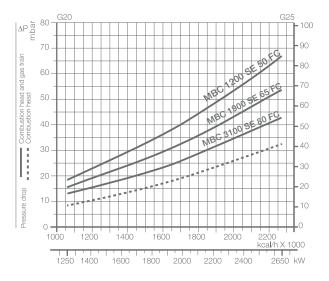


| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBD 415     | 3970250 (1) | 3000843 | (3)          |
| MBD 420     | 3970257 (1) | -       | (3)          |
| MBC 1200 SE | 3970221 (2) | -       | (3)          |

#### RS 190/E (LPG)



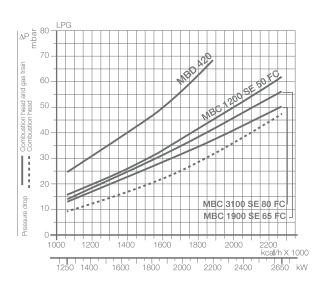
| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBC 1900 SE | 3970222 (2) | 3000825 | (3)          |
| MBC 3100 SE | 3970223 (2) | 3000826 | (3)          |


<sup>(1)</sup> Gas Train with 6-pin plug to install for connection to the burner.

<sup>(2)</sup> Gas Train with 6-pin plug installed for connection to the burner.

<sup>(3)</sup> Included on REC 27 standard functions.




#### RS 250/E MZ (NATURAL GAS)



| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBD 420     | 3970257 (1) | -       | (3)          |
| MBC 1200 SE | 3970221 (2) | -       | (3)          |

- (1) Gas Train with 6-pin plug to install for connection to the burner.
- (2) Gas Train with 6-pin plug installed for connection to the burner.

#### RS 250/E MZ (LPG)



| GAS TRAIN   | CODE        | ADAPTER | SEAL CONTROL |
|-------------|-------------|---------|--------------|
| MBC 1900 SE | 3970222 (2) | 3000825 | (3)          |
| MBC 3100 SE | 3970223 (2) | 3000826 | (3)          |
|             |             |         |              |

(3) Included on REC 27 standard functions.

Please contact the Riello Burner Technical Office for different pressure levels from those above indicated and refer to the technical manual for the correct choice of the spring.

In LPG plants, Multibloc gas trains do not operate below 0°C. They are only suitable for gaseous LPG (liquid hydrocarbons destroy the seal materials).

MBC 1200 gas train: the minimum operating pressure (\*) is higher or equal to 10 mbar. The gas train has to be installed next to the burner (if needed, only with the adapters listed in the catalogue) and it has to operate in its own working field.

MBC 1900-3100 gas train: the minimum operating pressure (\*) is higher or equal to 15 mbar. The gas train has to be installed next to the burner (if needed, with the adapters listed in the catalogue) and it has to operate in its own working field.

(\*) it is the upstream gas train pressure in full load operation conditions.

#### **SELECTING THE FUEL SUPPLY LINES**

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

# Control of the pressure drop in an existing gas line or selecting a new gas supply line.

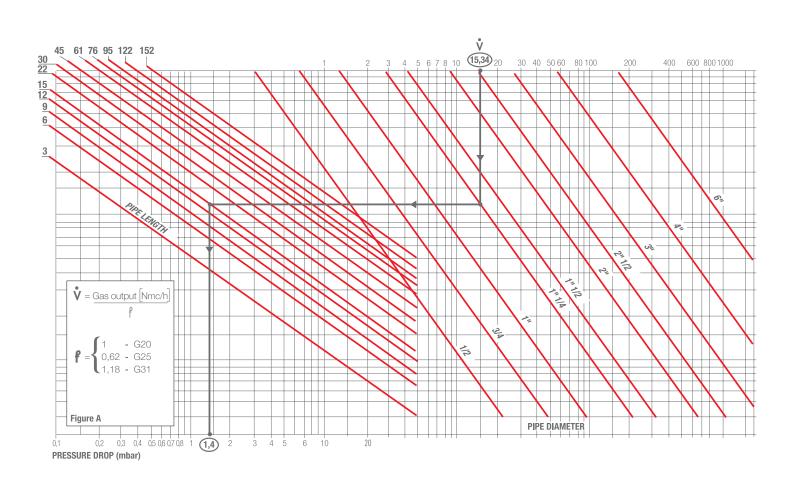
The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (  $\mathring{\boldsymbol{V}}$  ), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas

meter, the correct pressure value will be found for the choice of gas train.


**Example**: - gas used G25

gas outputpressure at the gas metergas line length9.51 mc/h20 mbar15 m

- conversion coefficient 0.62 (see figure A)

- equivalent methane output 
$$\mathbf{\mathring{V}} = \left[ \begin{array}{c} 9.51 \\ 0.62 \end{array} \right] = 15.34 \; \text{mc/h}$$

- once the value of 15.34 has been identified on the output scale (  $\mathring{\mathbf{V}}$  ), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train:
- correct pressure = (20-1.4) = 18.6 mbar







The ventilation circuit produces low noise levels with high performance pressure and air output, inspite of the compact dimensions.

In the RS 34-44-64-190-250/E models, noise has been reduced by the special design of the air suction circuit.

On RS 50-70-100-130/E models, the use of reverse curve blades and sound-proofing material keeps extremely noise level very low.

A stepper motor with high accuracy position and absence of joint clearance and mechanical hysteresis controls the air regulations, ensuring high fuel efficiency at all firing ranges.

A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.

The RS 34/E MZ and RS 44/E MZ are realised with a structure made by an innovative technology based on a new fibreglass reinforced polyamide material, with high thermal and mechanical characteristics, instead of the traditional aluminium.

This allows big advantages in terms of lay-out rationalisation, weight and dimensions reduction.

In order to guarantee the correct exercise temperature for the internal burner components in every working conditions, the new structure includes an innovative patented cooling technology.

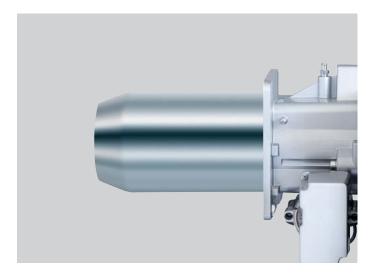
Between the burner front base and the reinforcing steel front plate, had been create an air cavity offering an high thermal insulation against the front boiler reflection heat, and to further improve the insulation efficiency the innovative **HCS (Housing Cooling System)** technology had been developed. Inside the front base cavity an air circulation is activated with continuous air volume refresh to obtain an active cooling system and avoid any heat transfer to the electrical component housing.



Example of stepper motor for air flow setting on RS 250/E MZ burner.

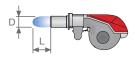


 ${\bf Example\ of\ HCS\ (Housing\ Cooling\ System)\ working\ concept.}$ 


# Combustion Head

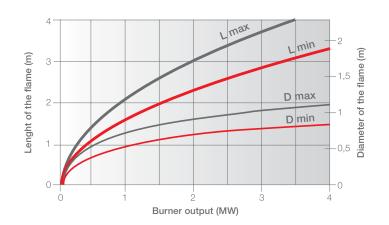
Different lengths of the combustion head can be chosen for the RS/E MZ series of burners.

The choice depends on the thickness of the front panel and the type of boiler.


Depending on the type of generator, check that the penetration of the head into the combustion chamber is correct.

The internal positioning of the combustion head can easily be adjusted to the maximum defined output by adjusting a screw fixed to the flange.




Example of a RS/E MZ burner combustion head.

#### **DIMENSIONS OF THE FLAME**

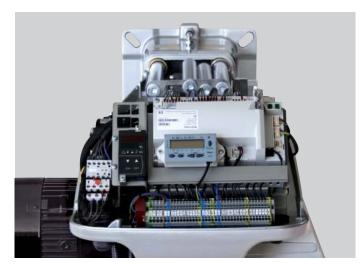


#### Example:

Burner thermal output = 2000 kW; L flame (m) = 2,7 m (medium value); D flame (m) = 0,8 m (medium value)





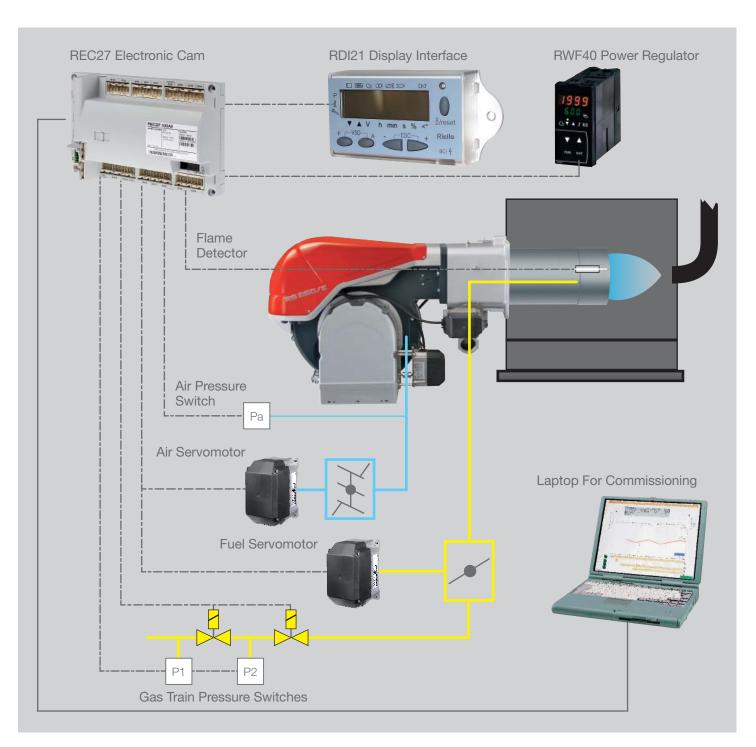





The models of RS/E MZ series of burners are based on a new Digital Burner Management System, Riello REC27, which is able to manage the air-fuel ratio by independent servomotors in order to obtain a perfect output control and to assure a correct combustion and safe operation on all modulation range.

The new Combustion Management System includes the standard function of a Flame Control Panel and offers many advantages such as, for example, a simple and fast commissioning, the burner status and fault causes diagnostic to facilitate the maintenance, the Integrated Gas Valves Proving function.






Example of Riello REC27, Digital Burner Management System, installed on a RS 44/E MZ and RS 190/E burner models.

The REC27.100A2 Digital Burner Management System, also called Electronic Cam, is a microprocessor-based device that controls the complete burner operating cycle, included the valves proofing test before the start-up, and the correct air-fuel mixing in every point of modulation range.

The actuators, connected to the air damper and fuel adjusting device with absence of joint clearance and mechanical hysteresis, are stepper motors with high accuracy position while the Display Interface RDI21 is the operating unit to easily adjust the system.

Operation can be "two stage progressive" or "modulating" with the installation of RWF40 electronic modulator and related temperature or pressure probe.



REC27.100A2 Digital Burner Management System Layout.



The electronic cam REC27.100A2 offers many advantages compared with the traditional burner control systems.

#### INTEGRATED CONTROL

REC27.100A2 Digital Burner Management System includes burner flame control functions for intermittent operation (LFL types) and airfuel ratio control.

#### **ENERGY SAVING**

Closed air damper during burner stand-by phase to avoid the combustion chamber cooling.

Specific configuration for Variable Speed Drive operation to reduce electrical consumption and noise levels.

#### SAFE OPERATION

Access to the internal parameter is possible through protection levels password for a safe operation.

#### **OPFRATION**

Two stage progressive or modulating operation with the installation of a PID electronic regulator.

#### REMOTE LOCKOUT RESET

#### SPECIFIC VERSION ON DEMAND

For Variable Speed Drive and Continuous operation.

#### ABSENCE OF JOINT CLEARANCE AND MECHANICAL HYSTERESIS

The connection to the air and fuel adjusting device is done with the absence of joint clearance and mechanical hysteresis, which allows to keep a constant air/fuel setting in order to assure the maintenance of combustion parameters.

As a result the seasonal efficiency of the combustion system improves and a safe operation is guaranteed.

#### EASY COMMISSIONING AND BURNER SETTING

An interface display is used for the burner commissioning and setting and allows, thanks to the self-adjusting function, a very easy start-up. The burner commissioning is based on a 9 points adjusting curve and the setting is very easy. For a quick setting only three points must be adjusted: P0 (ignition), P1 (low fire) and P9 (high fire), then the REC27 calculates the points in between with a linear interpolation; if necessary all points can be corrected (fuel or air).

#### INDEPENDENT IGNITION POINT POSITION

The Ignition point has an independent position in order to obtain the best burner start up control.

#### FLEXIBLE ADJUSTING

The air and fuel servomotors are stepper motor actuators with independent position for each point of adjusting curve; this devices allow an extremely flexible adjusting of combustion parameters.

#### VALVE PROOFING SYSTEM INCLUDED AS A STANDARD

The digital burner management system REC 27 includes as standard the valves proofing function that, in order to guarantee a safe operation of each burner start up, performs a leakage test before every burner start-up.

The gas valves proofing is selectable (active or inactive); a simple pressure switch has to be ordered as accessory for burners with maximum output < 1200 kW.

#### SAME ELECTRONIC CONTROL FOR ALL THE MODELS

The digital burner management system REC 27 is the same in all the models of RS/E series, so it will be very easy to set-up each model.

#### ADDITIONAL INFORMATION

Through the digital control and the interface display is possible to obtain information on burner status, operation and diagnostic functions with error history.

#### ADDITIONAL PARAMETERS INDICATION

The digital burner management system REC 27 gives some others additional parameters indication like operation hours, load level indication, flame signal intensity.

#### SYSTEM CONNECTIONS

Possible connection to a PC for burner setting and operation monitoring. Possible remote interface of burner operating signals via BUS protocol communication. Interfaces device available for Modbus connection to Building Management System or other OEM equipment

#### **CONTINUOUS VENTILATION**

For burners that can be damaged by heat continuous purging may be required. In this case, the fan operates in all phases. For this purpose, the fan contactor has to be connected to X3-05, terminal 3, tapped after the unit fuse and the safety loop.

For checking the air pressure switch, a pressure switch relief valve must be connected to fan contactor X3-05, terminal 1. When output X3-05, terminal 1, is activated, the relief valve diverts the fan pressure to the air pressure switch and, when deactivated, ensures that no pressure will be fed to the switch.

#### START WITHOUT PRE-PURGING

The prepurging function can be deactivated; when prepurging is activated, it will be performed in accordance with the adjusted prepurge time. If not activated, it will nevertheless be performed if one or several of the following conditions apply:

- Alterable lockout position
- After an off time of >24 hours
- In the event of a power failure (power-on)
- In the event of shutdown due to an interruption of gas supply (safety shutdown)

#### FORCED INTERMITTENT OPERATION (< 24 HOURS)

With the forced intermittent operation, the unit will shut down for a moment after 23 hours and 45 min of uninterrupted operation. Forced intermittent operation is a standard feature.

#### ADJUSTABLE PARAMETERS

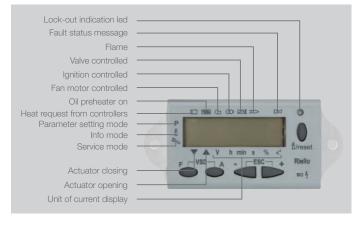
The service operator, through access with the correct password, has the possibility to adjust some characteristic parameters of the Digital Burner Management System during the burner set-up and maintenance in order to optimise the burner operation in function of the installation requirements.

Here below some examples of adjustable parameters:

- Electrical Supply Frequency (50 Hz 60 Hz)
- Fuel counter adjustment (impulses / Volume flow unit)
- Errors history reset
- Remote control management (Off, Modbus, Reserved)
- Total working hours reset
- Total ignition number reset

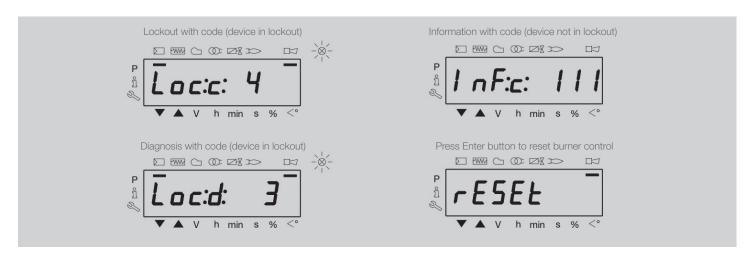
- Pre-ventilation time (20 s 60 min)
- Pre-ignition time (0,2 s 60 min)
- Post-combustion time (0,2 s 60 min)
- Post-ventilation time (0,2 s 108 min)
- Minimum and Maximum modulation limit (20-100%)
- Display light intensity

#### **DISPLAY INTERFACE**


The RDI21 display allows an easy interface wit the REC27 electronic cam.

It is a "Non-language" display; there are only symbols and parameter numbers with certain values displayed.

Only English international abbreviations are used instead of numbers: this solution significantly improves the understanding of the information; here below some examples are listed:


- OFF
- RUN
- OP (Operation)
- SER (Service)
- INF (Information)
- ERR (Error)
- LOC (Lockout)
- CODE (Password input)

In case of burner fault, a led highlights the lock-out status.



Example of RDI21 display and related symbols.



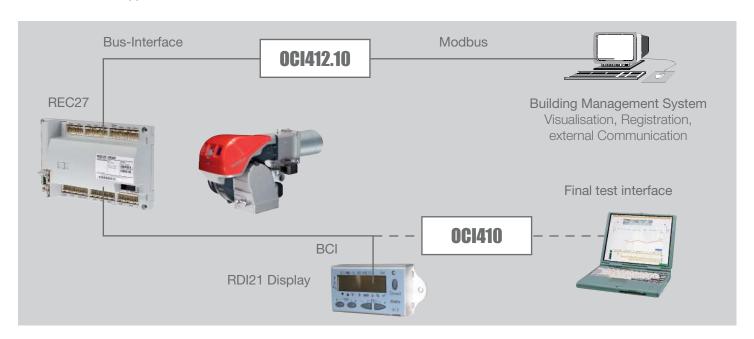


Example of RDI21 display Status and Fault information.

#### **REMOTE CONNECTIONS**

It is possible to connect the REC27 electronic cam to a data network based on a Modbus system by using of its Modbus functionality. This facilitates implementation of the following applications:

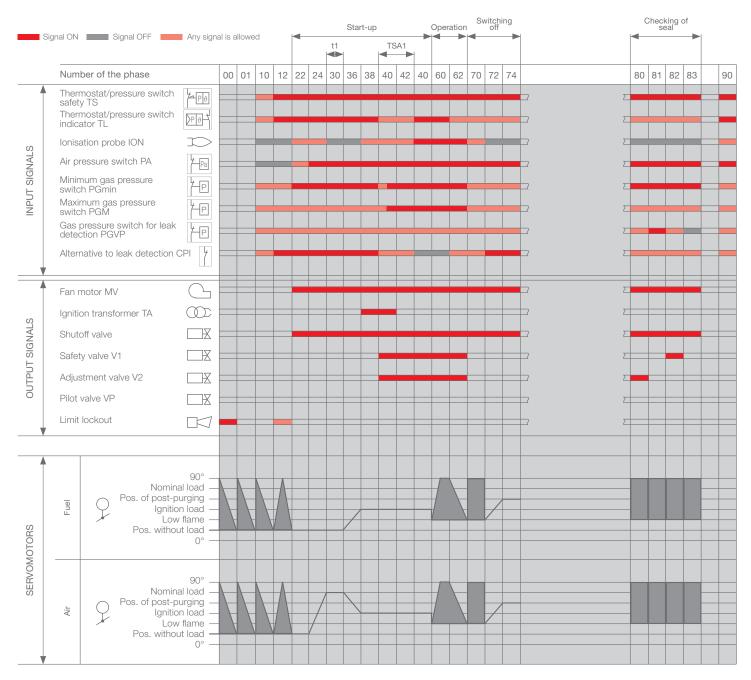
- Visualisation of plant states
- Plant control
- Logging


The physical connection to the Modbus system is made via an external OCI module.

The transmission mode used is RTU (Remote Terminal Unit).

The data are transmitted in binary format (hexadecimal) with 8 Bits.

The LSB (least significant bit) is transmitted first.


ASCII mode is not supported.



REC27 Remote Connections layout.

# **START UP CYCLE**

#### RS 34-44-50-64-70-100-130-250/E MZ - RS 190/E



#### LIST OF THE PHASES

| Ph00  | Lockout phase                                               |
|-------|-------------------------------------------------------------|
| Ph01  | Safety phase                                                |
| Ph10  | t10 = closure in pause                                      |
| Ph12  | Standby                                                     |
| Ph22  | t22 = Uphill train of the fan motor (fan motor = ON, safety |
| FIIZZ | valve = ON)                                                 |
| Ph24  | The burner moves to the pre-purging position                |
| Ph30  | t1 = pre-purging time                                       |
| Ph36  | The burner moves to the ignition position                   |
| Ph38  | t3 = pre-ignition time                                      |
| Ph40  | TSA1 = safety time 1 (ignition transformer ON)              |
| Ph42  | TSA1 = safety time 1 (ignition transformer OFF), t42 = pre- |
| P1142 | ignition time OFF                                           |

| Ph44  | t44 = interval time 1                                    |
|-------|----------------------------------------------------------|
| Ph60  | Operation                                                |
| Ph62  | t62 = max. time to reach the low flame (the burner moves |
| P1102 | to the switch-off position)                              |
| Ph70  | t13 = post-combustion time                               |
| Ph72  | The burner moves to the post-purging position            |
| Ph74  | t8 = post-purging time                                   |
| Ph80  | t80 = emptying time (valve leak detection)               |
| Ph81  | t81 = atmospheric test time (valve leak detection)       |
| Ph82  | t82 = filling time (valve leak detection)                |
| Ph83  | t83 = pressure test time (valve leak detection)          |
| Ph90  | Standby time due to lack of gas                          |
|       |                                                          |

Ph = phase



# **Burner Wiring**


All models of the RS/E burner series have an easily accessible control panel for the electrical components housing and wiring. In particular the RS 34-44/E MZ models, thanks to the new structure concept, have a extremely clean electrical layout to optimise the commissioning and maintenance speed.

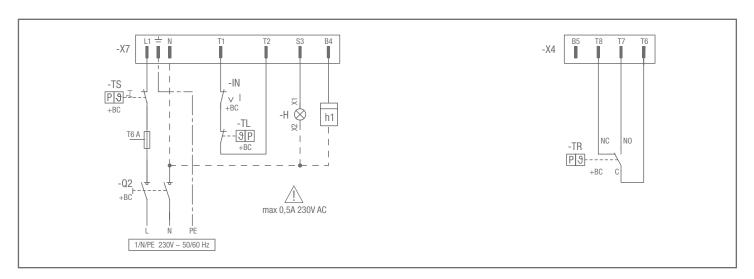
On these models the electrical connection are done by a Plug&Socket system, accessible from the external of the cover, and some of the main components as the servomotor, the air pressure switch, the electronic regulator (accessory) and the gas max pressure switch (accessory) are connected to the burner electrical wiring trough plugs & sockets system in order to facilitate the connection in case of maintenance.

The electrical wiring of all RS/E burner models are very easy to do following the wiring diagrams included in the instruction handbook. Electrical connections must be made by qualified and skilled personnel, according to the local norms.

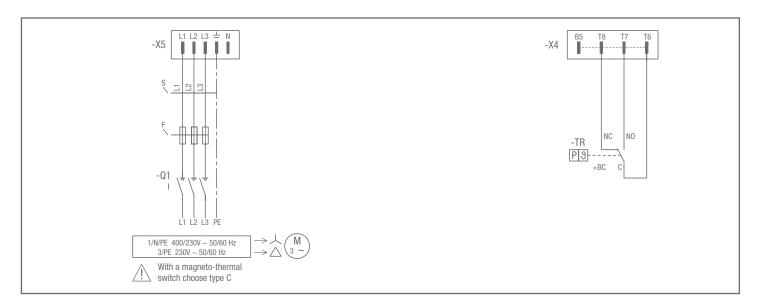


Example of the terminal board for electrical connections for the RS 70-100-130-190-250/E MZ models.

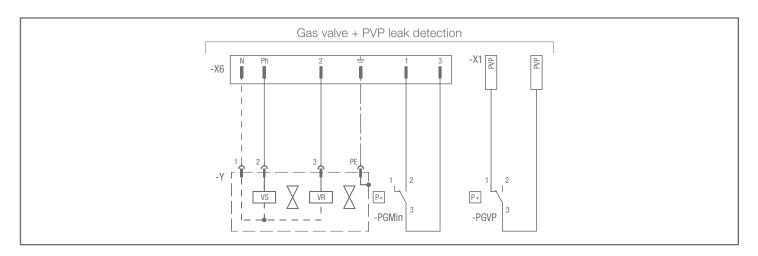



Example of Plug&Socket system for electrical connection of RS 34-44/E MZ.

#### WIRING LAYOUT KEY

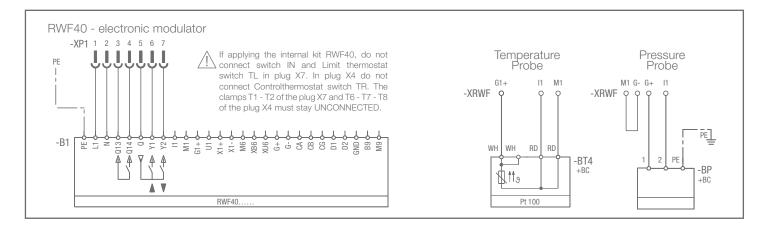

| +BC          | Boiler components                                           |
|--------------|-------------------------------------------------------------|
| B1           | Output regulator RWF40                                      |
| BP           | Pressure probe                                              |
| BT4          | Probe Pt 100, 3 wires                                       |
| F1           | Fan motor thermal relay                                     |
| G1           | Load indicator                                              |
| Н            | Remote lockout signal                                       |
| h1           | Hour counter                                                |
| IN           | Manual burner arrest switch                                 |
| K1           | Burner lockout clean contact relay                          |
| K2           | Flame present clean contact relay                           |
| <b>PGMin</b> | Minimum gas pressure switch                                 |
| PGVP         | Gas pressure switch for valve leak detection control device |
| Q1           | Three-phase disconnecting switch                            |

| Q2   | Single phase disconnecting switch               |
|------|-------------------------------------------------|
| RS   | Remote burner reset button                      |
| TL   | Limit thermostat/pressure switch                |
| TR   | Adjustment thermostat/pressure switch           |
| TS   | Safety thermostat/pressure switch               |
| X1   | Burner terminal strip                           |
| X4   | 4 pole plug                                     |
| X5   | 5 pole plug                                     |
| X6   | 6 pole plug                                     |
| X7   | 7 pole plug                                     |
| XP1  | Connector for output power regulator kit RWF40  |
| XRWF | Terminal board for output power regulator RWF40 |
| Υ    | Gas adjustment valve + gas safety valve         |

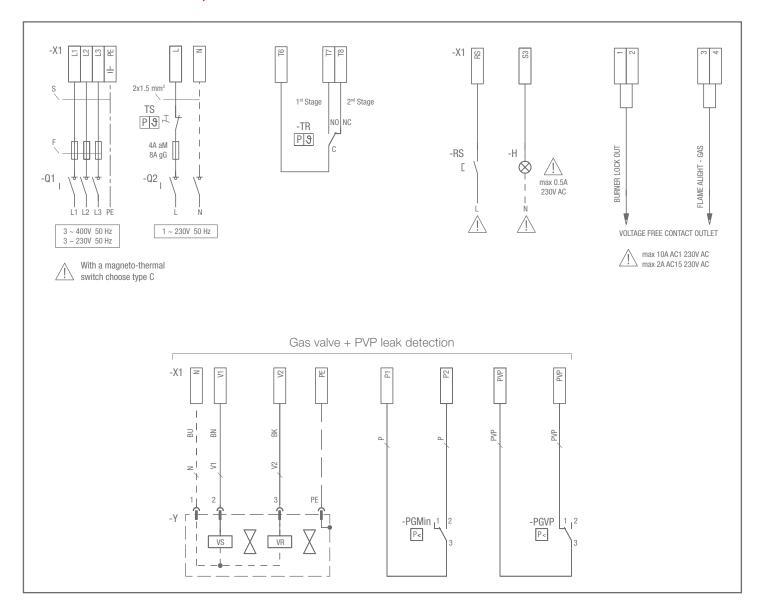

# RS 34/E - 44/E MZ ONE PHASE



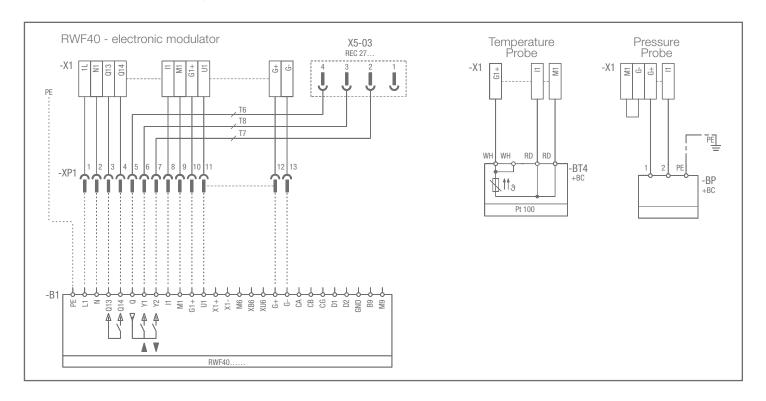
### RS 44-50-64/E MZ THREE PHASE




# RS 34-44/E MZ ONE PHASE - RS 44-50-64/E MZ THREE PHASE







# RS 34-44/E MZ ONE PHASE - RS 44-50-64/E MZ THREE PHASE



### RS 70-100-130-250/E MZ, RS 190/E THREE PHASE



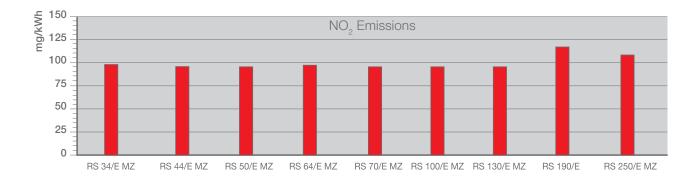
# RS 70-100-130-250/E MZ, RS 190/E THREE PHASE

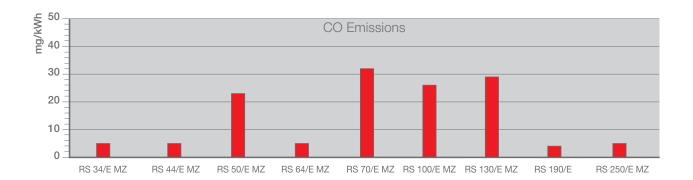


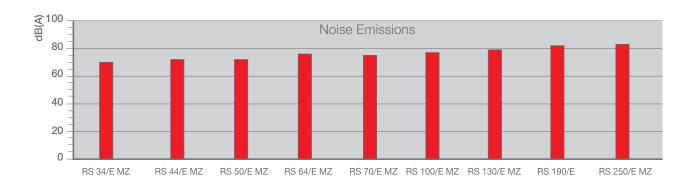
The following table shows the supply lead sections and the type of fuse to be used.

| MODEL          | V   | F (A) | L (mm²) |
|----------------|-----|-------|---------|
| ► RS 34/E MZ   | 230 | T6    | 1,5     |
| ► RS 44/E MZ   | 230 | T6    | 1,5     |
| N DC 44/E M7   | 230 | T6    | 1,5     |
| ▶ RS 44/E MZ   | 400 | T6    | 1,5     |
| > DO 50/E M7   | 230 | T6    | 1,5     |
| ► RS 50/E MZ   | 400 | T6    | 1,5     |
| ▶ RS 64/E MZ   | 230 | T10   | 1,5     |
| ► RS 04/E IVIZ | 400 | T6    | 1,5     |
| ▶ RS 70/E MZ   | 230 | T10   | 1,5     |
| P NO /U/E IVIZ | 400 | T6    | 1,5     |

V = Electrical supply F = Fuse L = Lead section


| MODEL         | V   | F (A)           | L (mm²) |
|---------------|-----|-----------------|---------|
| ▶ RS 100/E MZ | 230 | T16             | 1,5     |
| RS TOU/E IVIZ | 400 | T10             | 1,5     |
| ▶ RS 130/E MZ | 230 | T16             | 1,5     |
|               | 400 | T10             | 1,5     |
| N DC 100/F    | 230 | T25             | 2,5     |
| ► RS 190/E    | 400 | T25             | 2,5     |
| ▶ RS 250/E MZ | 230 | 25A aM - 40A gG | 6       |
|               | 400 | 16A aM - 32A gG | 4       |



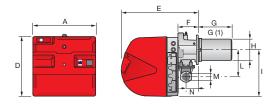



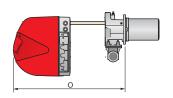

The emission data has been measured in the various models at maximum output, according to EN 676 standard.

The NOx emissions are conforming to the class 2 of EN 676 (class 1 for RS 190/E model).

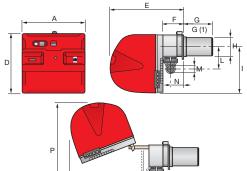






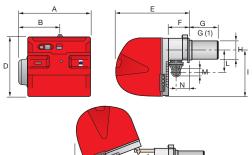

# **Overall Dimensions (mm)**

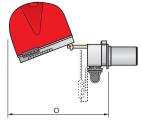

# **BURNERS**

RS 34-44/E MZ

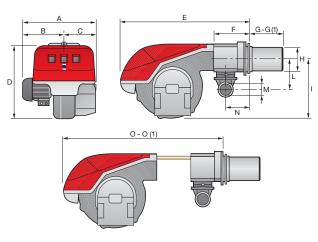







| MODEL        | Α   | D   | Е   | F   | G - G(1)  | Н   | - I | L   | М     | N   | 0   | Р   |
|--------------|-----|-----|-----|-----|-----------|-----|-----|-----|-------|-----|-----|-----|
| ► RS 34/E MZ | 442 | 422 | 508 | 138 | 216 - 351 | 140 | 305 | 177 | 1"1/2 | 84  | 780 | -   |
| ► RS 44/E MZ | 442 | 422 | 508 | 138 | 216 - 351 | 152 | 305 | 177 | 1"1/2 | 84  | 780 | -   |
| ► RS 50/E MZ | 476 | 474 | 580 | 164 | 216 - 351 | 152 | 352 | 168 | 1"1/2 | 108 | 810 | 719 |

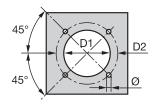

<sup>(1)</sup> dimension with extended head

RS 64/E MZ



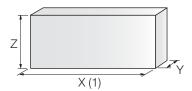


RS 70-100-130-250/E MZ - RS 190/E




| MODEL         | A   | В   | С   | D   | Е   | F   | G - G(1)  | Н   | 1   | L   | М  | N   | O - O(1)    |
|---------------|-----|-----|-----|-----|-----|-----|-----------|-----|-----|-----|----|-----|-------------|
| ► RS 64/E MZ  | 533 | 300 | -   | 490 | 640 | 222 | 250 - 385 | 179 | 352 | 221 | 2" | 134 | 810         |
| ► RS 70/E MZ  | 527 | 312 | 215 | 555 | 840 | 214 | 250 - 385 | 179 | 430 | 221 | 2" | 134 | 1161 - 1296 |
| ► RS 100/E MZ | 527 | 312 | 215 | 555 | 840 | 214 | 250 - 385 | 179 | 430 | 221 | 2" | 134 | 1161 - 1296 |
| ► RS 130/E MZ | 553 | 338 | 215 | 555 | 840 | 214 | 280 - 415 | 189 | 430 | 221 | 2" | 134 | 1161 - 1296 |
| ▶ RS 190/E    | 675 | 370 | 305 | 555 | 856 | 230 | 372 - 530 | 222 | 436 | 223 | 2" | 150 | 1328        |
| ► RS 250/E MZ | 732 | 427 | 305 | 555 | 872 | 230 | 370 - 520 | 222 | 436 | 264 | 2" | 150 | 1322 - 1467 |

<sup>(1)</sup> dimension with extended head




# **BURNER - BOILER MOUNTING FLANGE**



| MODEL         | D1  | D2      | Ø   |
|---------------|-----|---------|-----|
| ▶ RS 34/E MZ  | 160 | 224     | M8  |
| ► RS 44/E MZ  | 160 | 224     | M8  |
| ► RS 50/E MZ  | 160 | 224     | M8  |
| ► RS 64/E MZ  | 185 | 275-325 | M12 |
| ► RS 70/E MZ  | 185 | 275-325 | M12 |
| ▶ RS 100/E MZ | 185 | 275-325 | M12 |
| ▶ RS 130/E MZ | 195 | 275-325 | M12 |
| ▶ RS 190/E    | 230 | 325-368 | M16 |
| ▶ RS 250/E MZ | 230 | 325-368 | M16 |

# **PACKAGING**



| MODEL         | X (1)     | Υ    | Z   | kg  |
|---------------|-----------|------|-----|-----|
| ► RS 34/E MZ  | 1000      | 485  | 500 | 39  |
| ► RS 44/E MZ  | 1000      | 485  | 500 | 40  |
| ► RS 50/E MZ  | 1200      | 502  | 630 | 48  |
| ► RS 64/E MZ  | 1200      | 580  | 630 | 50  |
| ► RS 70/E MZ  | 1405      | 700  | 660 | 78  |
| ► RS 100/E MZ | 1405      | 700  | 660 | 81  |
| ► RS 130/E MZ | 1405      | 700  | 660 | 84  |
| ► RS 190/E    | 1405      | 1000 | 660 | 89  |
| ► RS 250/E MZ | 1405-1420 | 1000 | 660 | 125 |

<sup>(1)</sup> dimension with standard and extended head

# **Installation Description**

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

All operations must be performed in accordance with the technical handbook supplied with the burner.

#### **BURNER SETTING**

All the burners have slide bars, for easier installation and maintenance.

After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.

Adjust the combustion head.

Fit the gas train, choosing this on the basis of the maximum output of the boiler and considering the enclosed diagrams.

Refit the burner casing to the slide bars.

Close the burner, sliding it up to the flange.

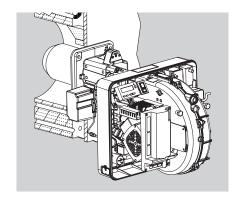
### **ELECTRICAL CONNECTIONS AND START UP**

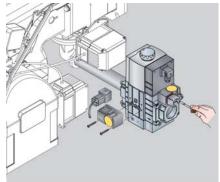
Make the electrical connections to the boiler following the wiring diagrams included in the instruction handbook.

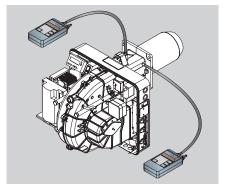
Turn the motor to check rotation direction (if it is a three-phase motor).

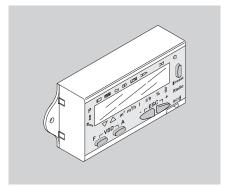
Perform a first ignition calibration on the gas train.

On start up, check:


- Gas pressure at the combustion head (to max. and min. output)
- Combustion quality, in terms of unburned substances and excess air.


### **BURNER MAINTENANCE**


The maintenance of RS/M burners is very simple thanks to the sliding bars system that allows an easy access to the internal components.

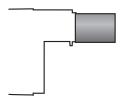

In particular the RS 34-44/E MZ models have a new sliding bars system to make easier the access to the combustion head.

The RS 190/E and RS 250/E MZ have new reinforced sliding bars that make very strong the burner structure during maintenance.












# **Burner Accessories**



#### **Extended heads**



"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The KITS available for the various burners, giving the original and the extended lengths, are listed below.

| BURNER        | 'STANDARD HEAD'<br>LENGTH (mm) | 'EXTENDED HEAD'<br>LENGTH (mm) | KIT CODE    |
|---------------|--------------------------------|--------------------------------|-------------|
| ► RS 34/E MZ  | 216                            | 351                            | in progress |
| ► RS 44/E MZ  | 216                            | 351                            | in progress |
| ► RS 50/E MZ  | 216                            | 351                            | in progress |
| ► RS 64/E MZ  | 250                            | 385                            | in progress |
| ► RS 70/E MZ  | 250                            | 385                            | in progress |
| ► RS 100/E MZ | 250                            | 385                            | in progress |
| ► RS 130/E MZ | 280                            | 415                            | in progress |
| ► RS 190/E    | 372                            | 530                            | in progress |
| ► RS 250/E MZ | 370                            | 520                            | in progress |

# **Spacer kit**



If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following table:

| BURNER                                          | SPACER THICKNESS S (mm) | KIT CODE |
|-------------------------------------------------|-------------------------|----------|
| ► RS 34/E MZ - 44/E MZ - RS 50/E MZ             | 90                      | 3010095  |
| ► RS 64/E MZ - RS 70/E MZ - 100/E MZ - 130/E MZ | 135                     | 3010129  |
| ▶ RS 190/E - 250/E MZ                           | 110                     | 3000722  |

#### **Continuous ventilation kit**



If the burner requires continuous ventilation in the stages without flame, a special kit is available as given in the following table:

| BURNER                                                          | KIT CODE |
|-----------------------------------------------------------------|----------|
| ▶ RS 34/E MZ - 44/E MZ                                          | 3010449  |
| ► RS 50/E MZ - 70/E MZ - 100/E MZ - 130/E MZ - 190/E - 250/E MZ | 3010094  |

# **Sound proofing box**



If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

| BURNER                              | BOX<br>TYPE | AVERAGE NOISE<br>REDUCTION [dB(A)](*) | BOX CODE |
|-------------------------------------|-------------|---------------------------------------|----------|
| ▶ RS 34-44-50-64/E MZ               | C1/3        | 10                                    | 3010403  |
| ► RS 70-100-130-250/E MZ - RS 190/E | C4/5        | 10                                    | 3010404  |

(\*) according to EN 15036-1 standard

# Accessories for modulating operation

To obtain modulating operation, the RS/E series of burners requires a regulator with three point outlet controls. On RS 34/E MZ - 44/E MZ - 250/E MZ the regulator is connected to the burner electrical wiring by plug-in system in order to make the connection easier and faster.

The relative temperature or pressure probes fitted to the regulator must be chosen on the basis of the application.

The following table lists the accessories for modulating operation with their application range.

| BURNER                                    | TYPE   | CODE    |
|-------------------------------------------|--------|---------|
| ▶ RS 34/E MZ - 44/E MZ                    | RWF 40 | 3010417 |
| ► RS 50-64-70-100-130-250/E MZ - RS 190/E | RWF 40 | 3010414 |

| TYPE               | RANGE (°C) (bar) | CODE    |
|--------------------|------------------|---------|
| Temperature PT 100 | -100 ÷ 500°C     | 3010110 |
| Pressure 4 ÷ 20 mA | 0 ÷ 2,5 bar      | 3010213 |
| Pressure 4 ÷ 20 mA | 0 ÷ 16 bar       | 3010214 |

#### **REGULATOR**



#### **PROBE**



# **Connection flange kit**



A kit is available for use where the burner opening on the boiler is of excessive diameter.

| BURNER                              | KIT CODE |
|-------------------------------------|----------|
| ▶ RS 34/E MZ - 44/E MZ - RS 50/E MZ | 3010138  |

#### I PG kit



For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:

| BURNER        | KIT CODE FOR<br>'STANDARD HEAD' | KIT CODE FOR<br>'EXTENDED HEAD' |
|---------------|---------------------------------|---------------------------------|
| ▶ RS 34/E MZ  | in progress                     | in progress                     |
| ▶ RS 44/E MZ  | in progress                     | in progress                     |
| ▶ RS 50/E MZ  | in progress                     | in progress                     |
| ▶ RS 64/E MZ  | in progress                     | in progress                     |
| ▶ RS 70/E MZ  | in progress                     | in progress                     |
| ▶ RS 100/E MZ | in progress                     | in progress                     |
| ▶ RS 130/E MZ | in progress                     | in progress                     |
| ▶ RS 190/E    | in progress                     | in progress                     |
| ▶ RS 250/E MZ | in progress                     | in progress                     |



### Town gas kit



For burning Town gas, a special kit is available:

| BURNER        | KIT CODE FOR<br>'STANDARD HEAD' (*) | KIT CODE FOR<br>'EXTENDED HEAD' (*) |
|---------------|-------------------------------------|-------------------------------------|
| ► RS 50/E MZ  | in progress                         | in progress                         |
| ► RS 70/E MZ  | in progress                         | in progress                         |
| ► RS 100/E MZ | in progress                         | in progress                         |
| ► RS 130/E MZ | in progress                         | in progress                         |
| ▶ RS 190/E    | in progress                         | in progress                         |

<sup>(\*)</sup> Without CE certification

### **Ground fault interrupter kit**



A "Ground fault interrupter kit" is available as a safety device for electrical system fault.

| BURNER                              | KIT CODE |
|-------------------------------------|----------|
| ▶ RS 34/E MZ - 44/E MZ              | 3010448  |
| ▶ RS 50/E MZ - RS 64/E MZ           | 3010321  |
| ► RS 70-100-130-250/E MZ - RS 190/E | 3010329  |

# **Gas max pressure switch**



If necessary a Gas max pressure Switch kit is available and connectable to the burner electrical wiring trough Plugs & Sockets system.

| BURNER                 | KIT CODE |
|------------------------|----------|
| ► RS 34/E MZ - 44/E MZ | 3010418  |

### **Volt free contact kit**




A volt free contact kit is available for installation onto the burner. It can be used for a remote interface between burner operating signals.

Every burner can be equipped with a single kit for a remote check of the flame presence signal and the burner lockout indication.

| BURNER                 | KIT CODE |
|------------------------|----------|
| ► RS 34/E MZ - 44/E MZ | 3010419  |

#### **DN80** gas flange kit



To modify the standard 2" burner gas input connection in to DN80 connection, a specific gas flange is available.

| BURNER                                 | KIT CODE |
|----------------------------------------|----------|
| ► RS 64-70-100-130-250/E MZ - RS 190/E | 3010439  |

### **OCI410 interface for ACS410 software kit**



Interface kit between burner management system and PC. It facilitates viewing, handling and recording setting parameters on site.

| BURNER                                       | KIT CODE |
|----------------------------------------------|----------|
| ► RS 34-44-64-70-100-130-250/E MZ - RS 190/E | 3010436  |

### **OCI412** interface kit



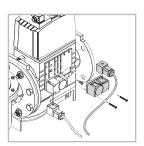
Interface kit between the REC27.100A2 and a Modbus system, such as a building automation and control system (BACS).

The Modbus interface is based on the RS-485 standard.

| BURNER                                       | KIT CODE |
|----------------------------------------------|----------|
| ► RS 34-44-64-70-100-130-250/E MZ - RS 190/E | 3010437  |

# **Gas Train Accessories**

### Stabiliser spring




Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range.

| GAS TRAIN                          | SPRING                    | SPRING CODE |
|------------------------------------|---------------------------|-------------|
| MBC 1900<br>▶ MBC 3100<br>MBC 5000 | White from 4 to 20 mbar   | 3010381     |
|                                    | Red from 20 to 40 mbar    | 3010382     |
|                                    | Black from 40 to 80 mbar  | 3010383     |
|                                    | Green from 80 to 150 mbar | 3010384     |

Please refer to the technical manual for the correct choice of spring.

# **PVP (Pressure Valve Proving) kit \***



The seal control function is included on Burner Digital Management System, it is only necessary to add the PVP kit on the gas train.

The PVP is included as standard equipment on RS 130/E-250/E MZ and RS 190/E models.

| BURNER                   | KIT CODE |
|--------------------------|----------|
| ▶ MBD type - MBC type ** | 3010344  |

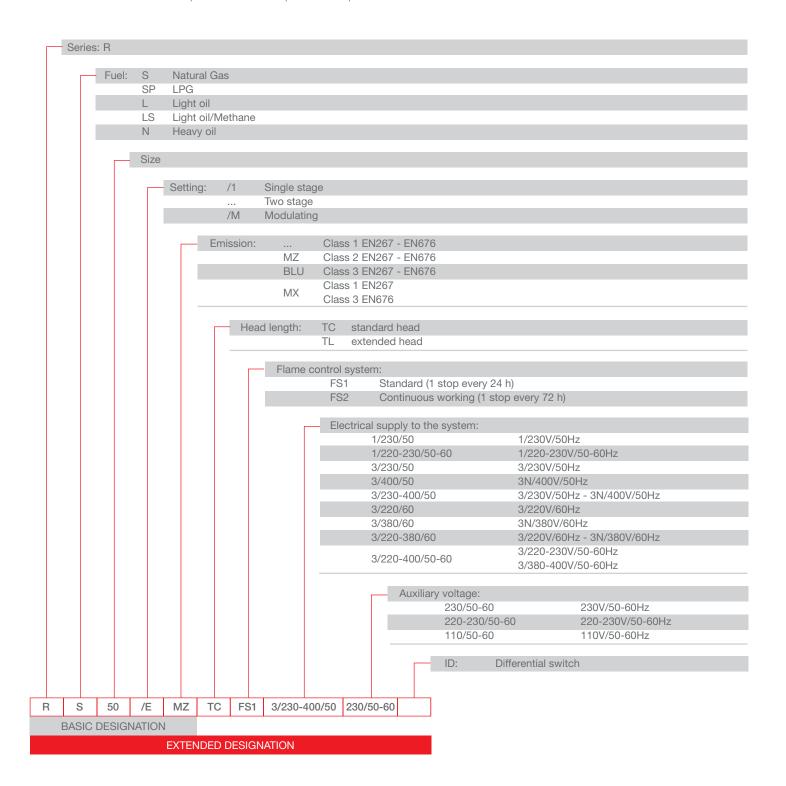
<sup>\*</sup> not necessary for the RS 130/E-250/E MZ and RS 190/E models where is included as a standard. \*\* MBC 120 model excluded (integrated seal control is not available with this gas train).



# **Adapters**






When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

| BURNER        | GAS TRAIN          | DIMENSIONS      | ADAPTER CODE |
|---------------|--------------------|-----------------|--------------|
| ► RS 34/E MZ  | MBC 120 - MBD 407  | 3/4" 1" 1/2     | 3000824      |
|               | MBD 420            | 2" 1" 1/2       | 3000822      |
| ▶ RS 44/E MZ  | MBC 120 - MBD 407  | 3/4" 1" 1/2     | 3000824      |
|               | MBD 420            | 2" 1" 1/2       | 3000822      |
| ► DC 50/E M7  | MBC 120 - MBD 407  | 3/4" 1" 1/2     | 3000824      |
| ► RS 50/E MZ  | MBD 420 - MBC 1200 | 2" 1" 1/2       | 3000822      |
|               |                    | 3/4" 1" 1/2     | 3000824      |
| ▶ RS 64/E MZ  | MBD 407            | 1" 1/2          | 3000843      |
|               | MBD 415            | 1" 1/2          | 3000843      |
| N DO 70/E M7  | MBD 412            | 1" 1/4          | 3010126      |
| ▶ RS 70/E MZ  | MBD 415            | 1" 1/2          | 3000843      |
| ▶ RS 100/E MZ | MBD 415            | 1" 1/2          | 3000843      |
|               | MBC 1900           | DN 65 2" 1/2 2" | 3000825      |
|               | MBD 415            | 1" 1/2          | 3000843      |
| ▶ RS 130/E MZ | MBC 1900           | DN 65 2" 1/2 2" | 3000825      |
|               | MBC 3100           | DN 80 2" 1/2 2" | 3000826      |
| ▶ RS 190/E    | MBD 415            | 1" 1/2          | 3000843      |
|               | MBC 1900           | DN 65 2" 1/2 2" | 3000825      |
|               | MBC 3100           | DN 80 2" 1/2 2" | 3000826      |
| ▶ RS 250/E MZ | MBC 1900           | DN 65 2" 1/2 2" | 3000825      |
|               | MBC 3100           | DN 80 2" 1/2 2" | 3000826      |

# Specification

#### **DESIGNATION OF SERIES**

A specific index guides your choice of burner from the various models available in the RS/E series. Below is a clear and detailed specification description of the product.





# **AVAILABLE BURNER MODELS**

| RS 34/E MZ   | TC  | FS1 | 1/220-230/50-60 | 220-230/50-60 |  |
|--------------|-----|-----|-----------------|---------------|--|
| RS 34/E MZ   | TL  | FS1 | 1/220-230/50-60 | 220-230/50-60 |  |
| RS 44/E MZ   | TC  | FS1 | 1/220-230/50-60 | 220-230/50-60 |  |
| RS 44/E MZ   | TL  | FS1 | 1/220-230/50-60 | 220-230/50-60 |  |
| RS 44/E MZ   | TC  | FS1 | 3/220-400/50-60 | 220-230/50-60 |  |
| RS 44/E MZ   | TL  | FS1 | 3/220-400/50-60 | 220-230/50-60 |  |
| RS 50/E MZ   | TC  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 50/E MZ   | TL  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 64/E MZ   | TC  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 64/E MZ   | TL  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 70/E MZ   | TC  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 70/E MZ   | TL  | FS1 | 3/230-400/50    | 230/50-60     |  |
| NO TOTE IVIZ | 1 L | ГОТ | 3/230-400/30    | 230/30-00     |  |
| RS 100/E MZ  | TC  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 100/E MZ  | TL  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 130/E MZ  | TC  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 130/E MZ  | TL  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 190/E     | TC  | FS1 | 3/230-400/50    | 230/50-60     |  |
| RS 250/E MZ  | TC  | FS1 | 3/230/50        | 230/50-60     |  |
| RS 250/E MZ  | TL  | FS1 | 3/230/50        | 230/50-60     |  |
| RS 250/E MZ  | TC  | FS1 | 3/400/50        | 230/50-60     |  |
| RS 250/E MZ  | TL  | FS1 | 3/400/50        | 230/50-60     |  |

Other versions are available on request.

#### PRODUCT SPECIFICATION

#### RS 34/E MZ - 44/E MZ models

#### Burner

Monoblock forced draught Low NOx gas burner with two stage progressive or modulating operation, with a specific kit, fully automatic, made up of:

- Microprocessor-based Digital Burner Management System (Electronic Cam)
- Display Interface operating unit to adjust the system
- Air suction circuit
- High performance fan with straight blades
- Air damper for air flow setting and butterfly valve for regulating fuel output controlled by independent stepper motor actuators
- Starting motor at 2800 rpm, single-phase/220-230V/50-60Hz or three-phase/380-400V/50-60Hz
- Low emission combustion head, that can be set on the basis of required output, fitted with:
  - stainless steel end cone, resistant to corrosion and high temperatures
  - ignition electrodes
  - ionisation probe
  - gas distributor
  - flame stability disk
- Exclusive patented HCS (Housing Cooling System) with high thermal insulation and air circulation with continuous air volume refresh for an active cooling system and avoid heat transfer to the electrical component housing
- Minimum air pressure switch stops the burner in case of insufficient air quantity at the combustion head
- Plugs and sockets for electrical connection, accessible from the external of the cover
- Burner on/off selection switch
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP X0D (IP 40) electric protection level.

#### Gas train:

Fuel supply line in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter of 2") fitted with:

- MULTIBLOC with integrated filter
- minimum gas pressure switch.

#### Conforming to:

- 89/336 (2004/108) EC directive (electromagnetic compatibility)
- 73/23 (2006/95) EC directive (low voltage)
- 92/42/EC directive (performance)
- 90/396/EC directive (gas)
- EN 676 (gas burners).

#### Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- 3 plugs for electrical connection (RS 34-44/E MZ single-phase)
- 4 plugs for electrical connection (RS 44/E MZ three-phase)
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

#### Available accessories to be ordered separately:

- Extended head kit
- Spacer kit
- Continuous ventilation kit
- Sound-proofing box
- RWF 40 output regulator
- Temperature probe -100 ÷ 500°C



- Pressure probe 0 ÷ 2.4 bar
- Pressure probe 0 ÷ 16 bar
- Connection flange kit
- LPG kit
- Ground fault interrupter kit
- Gas max pressure switch
- Volt free contact kit
- OCI410 interface for ACS410 software kit
- OCI412 modbus interface kit
- Gas train adapter
- PVP (pressure valve proving) kit.

#### RS 50/E MZ - 64/E MZ - 70/E MZ - 100/E MZ - 130/E MZ - 190/E - 250/E MZ models

#### Burner

Monoblock forced draught Low NOx gas burner with two stage progressive or modulating operation, with a specific kit, fully automatic, made up of:

- Microprocessor-based Digital Burner Management System (Electronic Cam)
- Display Interface operating unit to adjust the system
- Air suction circuit lined with sound-proofing material
- Fan with reverse curve blades (straight blades on the RS 64/E MZ 190/E 250/E MZ models) high performance with low sound emissions
- Air damper for air flow setting and butterfly valve for regulating fuel output controlled by independent stepper motor actuators
- Starting motor at 2800 rpm, three-phase 400V with neutral, 50Hz
- Low emission combustion head, that can be set on the basis of required output, fitted with:
  - stainless steel end cone, resistant to corrosion and high temperatures
  - ignition electrodes
  - ionisation probe
  - gas distributor
  - flame stability disk
- Maximum gas pressure switch to stop the burner in the case of excess pressure on the fuel supply line
- Minimum air pressure switch stops the burner in case of insufficient air quantity at the combustion head
- Burner on/off selection switch
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 44 electric protection level.

#### Gas train:

Fuel supply line in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter of 2") fitted with:

- MULTIBLOC with integrated filter
- minimum gas pressure switch

Fuel supply line the COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 80), fitted with:

- filter
- MULTIBLOC
- minimum gas pressure switch.

#### Conforming to:

- 89/336 (2004/108) EC directive (electromagnetic compatibility)
- 73/23 (2006/95) EC directive (low voltage)
- 92/42/EC directive (performance)
- 90/396/EC directive (gas)
- EN 676 (gas burners).

#### Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- Wiring loom fittings for the electrical connection
- 2 slide bar extensions (for extended head models and RS 190/E 250/E MZ models)
- Pressure switch for valve proofing system (RS 130/E MZ 190/E 250/E MZ models models)
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

#### Available accessories to be ordered separately:

- Extended head kit
- Spacer kit
- Continuous ventilation kit
- Sound-proofing box
- RWF 40 output regulator
- Temperature probe -100 ÷ 500°C
- Pressure probe 0 ÷ 2.4 bar
- Pressure probe 0 ÷ 16 bar
- Connection flange kit
- LPG kit
- Town gas kit
- Ground fault interrupter kit
- OCI410 interface for ACS410 software kit
- OCI412 modbus interface kit
- Gas train adapter
- DN80 gas flange kit
- PVP (pressure valve proving) kit
- Stabiliser spring.



#### RIELLO S.p.A.

Via Ing. Pilade Riello, 5 37045 Legnago (VR) Italy Tel. +39.0442.630111 - Fax +39.0442.21980 www.rielloburners.com - info@rielloburners.com

