Spring return actuator for Modbus with emergency setting function for adjusting air dampers in ventilation and air conditioning systems in buildings

- Torque 20 Nm
- Nominal voltage AC/DC 24 V
- Communication via Modbus RTU (RS-485)
- Conversion of sensor signals
- SF24A-MOD with cable SF24A-MOD-J6 with socket

Technical data

Electrical data

Nominal voltage	AC $24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / \mathrm{DC} 24 \mathrm{~V}$
Nominal voltage range	AC $19.2 \ldots 28.8 \mathrm{~V} / \mathrm{DC} 21.6 \ldots 28.8 \mathrm{~V}$
Power consumption In operation	$8.5 \mathrm{~W} @$ nominal torque
	At rest
For wire sizing	3.5 W
Connection	SF24A-MOD
	11 VA

Data for Modbus

Protocol	Modbus RTU (RS-485), not galvanically isolated		
Number of nodes	Max. 32 (without repeater)		
Transmission formats	$\begin{aligned} & \text { 1-8-N-2, 1-8-N-1, 1-8-E-1, 1-8-O-1 } \\ & \text { Default: 1-8-N-2 } \end{aligned}$		
Baud rates	$\begin{aligned} & 9600,19200,38400,76800,115200 \mathrm{Bd} \\ & \text { Default: } 38400 \mathrm{Bd} \end{aligned}$		
Scheduling	120Ω, can be switched		
Parameterisation	Push-button-operated fast addressing 1 ... 16 possible with the service tool ZTH-GEN		
Functional data	Factory settings	Variable	Setting
Torque (nominal torque) Motor Spring return	Min. 20 Nm @ nominal voltage Min. 20 Nm		
Position accuracy	$\pm 5 \%$		
Direction of rotation Motor Spring return	Reversible with switch By mounting		
Direction of motion at $\mathrm{Y}=0 \%$	At switch position $0 \sim$ and $1 \curvearrowright$, respectively		
Manual override	With hand crank and interlocking switch		
Angle of rotation	Max. $95^{\circ} \not \subset$, adjustable from 33% in 5% steps (with enclosed angle of rotation limiter)		
Running time Motor Spring return	$\begin{aligned} & \leq 150 \mathrm{~s} / 95^{\circ} \mathrm{\triangleleft} \\ & \leq 20 \mathrm{~s} @-20 \ldots 50^{\circ} \mathrm{C} / \text { max. } 60 \mathrm{~s} @-30^{\circ} \mathrm{C} \end{aligned}$	$70 . . .220$ s	
Automatic adjustment of running time, control and feedback to match the mechanical angle of rotation	Manual triggering of the adaption by pressing the «Adaption» button or with the PC tool	Automatic adaption whenever the supply voltage is switched on, or manual triggering	
Angle of rotation limiting	MAX (maximum position) $=100 \%$ MIN (minimum position) $=0 \%$ ZS (intermediate position, only AC) $=50 \%$	$\begin{aligned} & \operatorname{MAX}=\left(\text { MIN }+30^{\circ} \Varangle\right) \ldots 100 \% \\ & \operatorname{MIN}=0 \% \ldots\left(\text { MAX }-30^{\circ} \Varangle\right) \\ & Z S=\text { MIN } \ldots \text { MAX } \end{aligned}$	
Sound power level Motor Spring return	$\leq 40 \mathrm{~dB}(\mathrm{~A}) @ 150$ s Laufzeit$\leq 62 \mathrm{~dB}(\mathrm{~A})$		
Position indication	mechanical, pluggable		
Safety			
Protection class	III Safety extra-low voltage		
Degree of protection	IP54 in any mounting position (for SF24A-MOD-J6 only with extra protective sleeve)		
EMC	CE according to 2004/108/EC		

Technical data	(continued)
Principle of operation	Type 1 (according to EN 60730-1)
Rated current voltage	0.8 kV (according to EN 60730-1)
Control pollution degree	3 (according to EN 60730-1)
Ambient temperature	$-30 \ldots+50^{\circ} \mathrm{C}$
Non-operating temperature	$-40 \ldots+80^{\circ} \mathrm{C}$
Ambient humidity	95% r.h., non-condensing (according to EN 60730-1)
Maintenance	Maintenance-free
Dimensions $/$ Weight	
Dimensions	See «Dimensions» on page 8
Weight	Approx. 2.0 kg

Safety notes

- The actuator is not allowed to be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.
- It may only be installed by suitably trained personnel. Any legal regulations or regulations issued by authorities must be observed during assembly.
- The device may only be opened at the manufacturer's site. It does not contain any parts that can be replaced or repaired by the user.
- The cable must not be removed from the device.
- The device contains electrical and electronic components and is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

Product features

Modbus overview

Note regarding Read Discrete Inputs

The command reads one or more bits and can alternatively be used for register 105 (Malfunction and service information). The start address to be used is 1664 .

Register

| | No. | Adr |
| :---: | :---: | :--- | Register

- Registers in Bold can be written
- Registers <100 (In operation) which can be written are volatile and should therefore be updated periodically
- Registers >100 which can be written are non-volatile

Commands All data is arranged in a table and addressed by $1 . . n$ (register) or $0 .$. n-1 (address). No distinction is made between data types (Discrete Inputs, Coils, Input Registers, Holding Registers). As a consequence, all data can be accessed with the two commands for Holding Register. The commands for Discrete Inputs and Input Registers can be used as an alternative.
Standard commands:
Read Holding Registers [3]
Write Single Register [6]
Optional commands:
Read Discrete Inputs [2]
Read Input Registers [4] Write Multiple Registers [16]

Modbus register description

Register 1: Setpoint Setpoint for actuator setting or volumetric flow in hundredths of one percent, i.e. $0 . . .10000$ corresponds to $0 . . .100 \%$

Register 2: Override control
Overriding the setpoint with defined values

Override control	
0	None
1	Open
2	Close
3	Min
5	Max

Register 3: Command Initiation of actuator functions for service and test; the register is reset automatically.

Command	
0	None
1	Adaption
2	Test run
3	Synchronisation
4	Reset actuator malfunctions

Register 4: Actuator type
Actuator type; the allocation may deviate from the basic category with some actuators.

Actuator type	
0	Actuator not connected / not known
1	Air/water actuators with/without safety function
2	Volumetric flow controller VAV / EPIV
3	Fire damper actuator

Register 5: Relative position Relative position in hundredths of one percent,
i.e. 0 ... 10000 correspond to 0 ... 100\%

Register 6: Absolute position Absolute position
0 ... 10000 (65535 if not supported by the actuator)
The unit depends on the device:
[${ }^{\circ}$] for actuators with rotary movement
[mm] for actuators with linear movement
Register 7: Relative volumetric flow Relative volumetric flow in hundredths of one percent of Vnom,
i.e. 0 ... 10000 correspond to 0 ... 100%

This value is available only for VAV controllers and EPIV devices (actuator type: 2).
For all other types, 65535 will be entered.
Register 8: Absolute volumetric flow
Absolute volumetric flow
This value is available only for VAV controllers and EPIV devices (actuator type: 2).
For all other types, 65535 will be entered.
The unit depends on the device:
[$\mathrm{m} 3 / \mathrm{h}$] for VAV controllers (or [Pa] for pressure applications)
[$/ / \mathrm{min}$] for EPIV devices
Register 9: Sensor value Current sensor value; dependent on the setting in Register 108
The unit depends on the sensor type: [mv] [Ω] [-]
Register 101, 103: Series number
Each MP node has an unambiguous series number which is either impressed on or glued to the node. The series number consists of 4 segments, although only parts 1,2 and 4 are displayed on Modbus.
Example: 00839-31324-064-008

Register 9	Register 10	Register 11
1st part	2nd part	4th part
00839	31234	008

Register 104: Firmware Version Firmware version of Modbus module (VX.XX) e.g. 101 V1. 01

Modbus register description

Register 105: Malfunction and service information

(continued)

The status information is split into messages about the actuator (malfunctions) and other service information.

	Bit	Description
$\begin{array}{\|l\|} \hline \mathbb{0} \\ 0 \\ 0 \\ 3 \\ 0 \end{array}$	0	Excessive utilisation
	1	Mechanical travel increased
	2	Mechanical overload
$\begin{array}{\|c} 0 \\ 0 \\ 0.0 \\ 0.0 \\ \frac{5}{3} \\ \frac{3}{n} \\ \end{array}$	3	-
	4	Safety-relevant faults (fire protection only)
	5	Damper test error (fire protection only)
	6	Duct temperature too high (fire protection only)
	7	Smoke detector tripped (fire protection only)
	8	Internal activity (test run, adaption, ...)
	9	Gear disengagement active
	10	Bus watchdog triggered
	11	-
	12	-
	13	-
	14	-
	15	-

The malfunction bits can be reset with Register 3 (command 4) or with the Belimo PC-Tool. Malfunctions 0 and 4 cannot be reset.

Register 106: Min / Vmin setting Minimum limit (position or volumetric flow) in hundredths of one percent, i.e. $0 . . .10000$ correspond to $0 . . .100 \%$ Caution: Changing the setting may result in malfunctions.

Register 107: Max / Vmax setting Minimum limit (position or volumetric flow) in hundredths of one percent,
i.e. 2000 ... 10000 correspond to 20 ... 100%

Caution: Changing the setting may result in malfunctions.
Register 108: Sensor type

Note

After changing the sensor type, the actuator must always be restarted in order for correct sensor values to be read out.

Register 109: Bus fail position

Sensor type connected to the actuator; in the absence of sensor specification, the switching at the Y input will have the effect of a local compulsion.

Sensor type	
0	None
1	Active sensor (mV)
2	Passive sensor $1 \mathrm{k}(\Omega)$
3	Passive sensor $1 \ldots 20 \mathrm{k}(\Omega)$
4	Switching contact $(0 / 1)$

Modbus communication is not monitored as standard. In the event of a breakdown in communication, the actuator retains the current setpoint.
The bus monitoring controls the Modbus communication. If neither the setpoint (Register 1) nor the override control (Register 2) is renewed within 120 seconds, the actuator controls to the bus fail position (closed / open).
Triggered bus monitoring is indicated in Register 105.

Bus fail position	
0	Last setpoint (no bus monitoring)
1	Fast close if time is exceeded
2	Fast open if time is exceeded

Electrical installation

Connection diagram for cable layout

Connection via safety isolating transformer. \triangle

Note

Modbus signal assignment
$\mathrm{C}_{1}=\mathrm{D}-\mathrm{=} \mathrm{~A}$
$C_{2}=D+=B$
Power supply and communication are not galvanically isolated.
Interconnect ground signal of the devices.

Connection without sensor

Connection with passive sensor, e.g. Pt1000, Ni1000, NTC

Connection with switching contact, e.g. $\Delta \mathrm{p}$-monitor

Connection with active sensor, e.g. $0 \ldots 10 \mathrm{~V} @ 0 \ldots 50^{\circ} \mathrm{C}$

Requirements for switching contact:
The switching contact must be able to accurately switch a current of 16 mA at 24 V .

Possible input voltage range:
0 ... 32 V (resolution 30 mV)

Electrical installation	(continued)			
RJ12 socket	T\| $\\|^{\text {d }}$	Connection assignment: Pin 1: AC/DC 24V	Modbus signal assignment: $\mathrm{C}_{1}=\mathrm{D}-=\mathrm{A}$	
Notes - Always fit feed pins in pairs! - Only attach and remove connection cable when de-energised!		Pin 1: AC/DC $24 V$ Pin 2: GND Pin 3: $\mathrm{D}-(\mathrm{A})$ Pin 4: $\mathrm{D}+(\mathrm{B})$ Pin 5: AC/DC 24 V Pin 6: GND	$\mathrm{C}_{2}=\mathrm{D}+=\mathrm{B}$	

Parameterisation

Note
 The actuator can be triggered with the PC tool under «PP".

Operating controls and indicators

(1) Membrane key and green LED display

Off:
No power supply or fault
Illuminated: In operation
Flashing: Address mode: pulses according to set address (1 ... 16) when starting: reset to factory setting (communication)
Press button: in standard mode: switches on angle of rotation adaptation in address mode: confirmation of set address (1 ... 16)
(2) Membrane key and yellow LED display

Off: \quad The actuator is ready
Illuminated: Adaption or synchronising process active or actuator in address mode (green LED indicator flashing)
Flickering: Modbus communication active
Press button: in operation (>3s): switch address mode on and off
in address mode: address setting by pressing several times when starting ($>5 \mathrm{~s}$): reset to factory setting (communication)
(3) Service plug

For connecting parameterising and service tools
Operating controls The hand crank, interlocking switch and direction of rotation switch are provided on both sides.

Dimensions [mm]

Variant 1a:
3/4"-spindle clamp (with insertion part) EU Standard

Damper spindle	Length	OI	$\square I$	ΔI
\square	≥ 85	$10 \ldots 22$	10	$14 \ldots 25.4$
\square	≥ 15	\ldots		\ldots

Variant 1b:
1"-spindle clamp (without insertion part) EU Standard

Damper spindle	Length	OI	$\square \mathbf{I}$
	≥ 85	$19 \ldots 25.4$	$12 \ldots 18$
	≥ 15	(26.7)	

Variant 2:
1/2"-spindle clamp (optional via configuration)

Damper spindle	Length	OI	$\widehat{\mathbf{I}}$
\square	≥ 85	$10 \ldots 19$	$14 \ldots 20$
	≥ 15		

AC 24 V / DC 24 V

AC 24 V / DC 24 V

AC 24 V / DC 24 V

AC $24 \mathrm{~V} / \mathrm{DC} 24 \mathrm{~V}$

